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ABSTRACT

FAITHFUL AND USEFUL EXPLANATIONS BY LARGE LANGUAGE MODELS

Qing Lyu

Chris Callison-Burch

Marianna Apidianaki

The advent of large-scale pretrained Language Models (LMs) has ushered in a new era in Natural

Language Processing (NLP). These models, trained on massive text corpora, have demonstrated

remarkable performance across a wide array of tasks, from machine translation and text summarization

to question answering and even code generation. However, their impressive capabilities are often

accompanied by a lack of transparency in their decision-making processes. This opacity raises

concerns about their reliability, fairness, and potential biases, hindering their broader adoption in

high-stakes applications.

The pursuit of interpreting LMs, often referred to as “explainable AI” or “interpretable NLP”, has

thus emerged as a critical research area. Existing research has made significant strides in proposing

a plethora of model explanation methods. In particular, the idea of using Large Language Models

(LLMs) to generate explanations for their own decision-making process appears promising. This

thesis contends that two key aspects have been under-emphasized in LLM-generated explanations:

faithfulness and utility. Faithfulness refers to the degree to which these explanations accurately

reflect the model’s reasoning process behind predictions, while utility pertains to their practical value

in real-world applications. Current LLM-generated explanations often appear convincing yet can

misrepresent the underlying reasoning, leading to misplaced trust and limited usefulness in practical

scenarios.

To enhance faithfulness, this thesis introduces the Faithful Chain-of-Thought (Faithful CoT) frame-

work, which combines stochastic translation with symbolic problem-solving. This integration not

only ensures the faithfulness of explanations, but also empirically improves the performance on
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multiple reasoning tasks, including Math Word Problems, Planning, Multi-hop Question Answering,

and Logical Inference.

In terms of utility, the thesis explores the application of LLM-generated explanations in different

stages of model development, such as in-context learning and fine-tuning. It demonstrates how

explanations can be employed to enhance model calibration, improve self-correction capabilities, and

increase robustness against spurious cues. Specifically, explanations serve as a valuable interface for

post-hoc calibration and as training signals during fine-tuning to mitigate the reliance on irrelevant

features in the data.

In summary, this thesis contributes to the ongoing quest for faithful and useful explanations generated

by LLMs. We aim to bridge the gap between theoretical understanding and practical applications of

interpretability, ultimately fostering the development of more transparent, reliable, and beneficial AI

systems.
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CHAPTER 1

Introduction

Imagine receiving a text message from your advisor/manager: “Hi, I need to know if you’re available

at the moment?”. Many people (including my lab-mate) would promptly respond, “Yes, I’m available!”.

Shortly after, a follow-up message requests, “OK, good. I want you to locate a close-by store and

get me some Apple gift cards. I’m going to need them for a presentation immediately after the

conference meeting. How soon can you get this done?”

At this point, the discerning reader might have recognized a scam. Now, consider two scam detection

systems to analyze this text: one based on a decision tree (DT) and the other on a neural network

(NN), as shown in Figure 1.1.

Figure 1.1: Two scam detectors.

Suppose both systems fail to detect this message as a scam. In the DT-based detector, the model’s

transparency allows us to trace its failure to specific nodes, such as the lack of nodes checking

for mentions of “gift cards”. This clarity in tracing errors facilitates straightforward debugging.

Conversely, the neural-network-based detector, with its end-to-end opaque nature, leaves us in the

dark about why it failed to flag the scam. This lack of transparency makes diagnosing and correcting
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errors significantly more challenging.

In other words, compared to classic Machine Learning (ML) models, end-to-end neural LMs are

intrinsically harder to interpret in terms of their reasoning mechanism (Bommasani et al., 2021).

Even though they have brought substantial progress to the field of NLP, their opaque decision-making

processes—often described as “black boxes”—pose challenges for understanding and trust. Their

lack of interpretability (or, explainability1) raises critical questions about controllability, safety, and

trustworthiness, especially when these models are deployed in high-stakes real-world applications.

To open the black box, a plethora of explanation methods have been developed to shed light on under-

lying reasoning mechanisms behind LM behavior, ranging from attention analysis (Jain and Wallace,

2019; Wiegreffe and Pinter, 2019) and influence functions (Koh and Liang, 2017; Han et al., 2020)

to counterfactual intervention (Ribeiro et al., 2016; Lundberg and Lee, 2017) and causal mediation

(Vig et al., 2020; Wu et al., 2022b). However, the advent of Large Language Models (LLMs) has

further complicated the landscape of Explainable AI, despite their remarkable capabilities across

various NLP tasks. Their lack of transparency, such as the limited access to their pretraining data,

weights, and sometimes even probability logits, renders many traditional explainability techniques

inapplicable. Additionally, due to the sheer size and complexity of LLMs, the computational cost

can be prohibitive to simply run these explainability methods, such as counterfactual perturbation

or backpropagation methods (Zhu et al., 2024).

To address these challenges, a recent line of research has emerged focusing on using LLMs themselves

to generate explanations for their outputs. This approach, with Chain-of-Thought-style (CoT)

prompting (Wei et al., 2022b) as a prominent example, leverages the few-shot learning capabilities

of LLMs to provide step-by-step reasoning before generating their final prediction. While promising,

we argue that this approach raises two critical concerns:

• Faithfulness: To what extent do these explanations accurately reflect the true reasoning

process behind the model prediction?2 Theoretically, there is no guarantee of faithfulness
1Despite their subtle distinctions in certain existing studies, we use the terms interchangeably in this thesis.
2Note that this differs from the notion of faithfulness in the Natural Language Generation (NLG) literature,
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in LLM-generated explanations. The generation process is auto-regressive, meaning that

LLMs iteratively predict the statistically most likely next token from the vocabulary given

the previous tokens. Thus, there is no inherent constraint ensuring that the final answer

is generated using the same reasoning mechanism described in the explanation. Empirical

studies have shown that LLM can generate systematically unfaithful explanations — though

relying on implicit biases such as gender and race, their predictions are still rationalized with

plausible-looking explanations (Turpin et al., 2023). Moreover, as models become larger and

more capable, they are more likely to produce unfaithful explanations (Lanham et al., 2023).

This lack of faithfulness can create a false impression of “self-interpretability” and lead to easier

over-trust, especially when explanations appear plausible (Slack et al., 2020).

• Utility (or usefulness): How do we make these explanations useful for real-life application

scenarios, such as model debugging, auditing, trust calibration, and so on? Research has shown

that explanations are not always useful by default. For instance, in the context of collaborative

decision-making, LLM-generated explanations can be adversarially helpful by making a wrong

answer appear reasonable (Ajwani et al., 2024). When used for knowledge discovery, only a

small fraction (20%) of LLM-generated explanations are actually useful in helping laypeople

answer unseen questions (Joshi et al., 2023). The lack of usefulness undermines the primary

purpose of explanations, which is to aid a target audience in understanding and applying the

model’s outputs in real-world scenarios.

In this thesis, we aim to address these two critical gaps in LLM-generated explanations.

First, we present a comprehensive taxonomy of model explanation methods (Chapter 3), cate-

gorizing them into five families: similarity-based methods, analysis of model-internal structures,

backpropagation-based methods, counterfactual intervention, and self-explanatory models. For each

family, we discuss its representative studies and analyze its strengths and weaknesses. We then

primarily in what constitutes the ground truth. In explanability, we talk about the faithfulness of an explanation
w.r.t. the model’s underlying reasoning mechanism – the ground truth is usually unknown. In NLG, we talk
about the faithfulness of the generated text (e.g., a translated sentence, or a summary) w.r.t. some explicit source
(e.g., the source sentence, or the full document) – the ground truth is transparent. The opposite of faithfulness in
NLG results in the commonly known issue of hallucination (Huang et al., 2023).
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Figure 1.2: An overview of our 2-stage Faithful CoT pipeline, consisting of Translation and
Problem Solving.

zoom in on LLM-generated explanations as one representative line of work in the last family, with

particular emphasis on improving their faithfulness and utility.

To enhance faithfulness, we propose a novel framework called Faithful Chain-of-Thought (FCoT)

Reasoning (Chapter 4), which integrates stochastic LLMs with symbolic reasoning. As shown in

Figure 1.2, our framework decomposes a reasoning task into two stages: Translation (Natural

Language query → symbolic reasoning chain) and Problem Solving (reasoning chain → answer),

using an LLM and a deterministic solver respectively. We demonstrate the efficacy of our approach on

10 reasoning datasets from 4 diverse domains, spanning Math Word Problems, Planning, Multi-hop

Question Answering (QA), and Logical Inference. Results suggest that symbolic structures, when

integrated into end-to-end NLP pipelines, offer a promising approach to improve the faithfulness of

explanations while simultaneously enhancing task performance.

In addressing utility, we argue when used as an exposure interface3 or training signals, LLM-generated

explanations can be helpful for model improvement in different scenarios, such as in-context

learning and finetuning. Specifically, we investigate the role of explanations for three use cases of

model improvement: calibration, self-correction, and robustness.
3When asked to generate (faithful) explanations, LLMs are forced to expose their “thought process” behind the

prediction, which makes it easier to examine, critique, and improve the prediction.
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Faithful explanations make instruction-tuned models better calibrated

38

Confidence ConfidenceConfidence

Ac
cu

ra
cy

standard CoT Faithful CoT

Calibration curves for Codex on ASDIV (agreement-based consistency)

Over-confident Under-confident Well-calibrated

RESULTS

▸ Example

Figure 1.3: Calibration curves of Codex on a math word problem dataset, with three prompting
strategies.

During in-context learning, explanations can be used as an interface to expose an LLM’ thought

process for inspection and improvement. We first show that explanations provide a simple and

reliable method for post-hoc calibration of LLM prediction confidence (Chapter 5). We propose a

technique to elicit confidence estimates from the distribution of multiple randomly sampled model

generations, using three measures of consistency. Our results indicate that when LMs are prompted

to produce explanations before their final prediction, they exhibit significantly better calibration,

with this effect becoming more pronounced as the LM size increases. Moreover, compared to free-text

explanations (e.g., CoT), faithful explanations (e.g., Faithful CoT) make instruction-tuned models

better calibrated, as illustrated in Figure 1.3.

Teachable LM Agents via Interaction

45FUTURE WORK

▸ Beyond trust calibration — can we teach 
LMs to self-correct from user interaction?

'LVFULPLQDWLRQ
,V�WKH�RXWSXW�FRUUHFW"

&ULWLTXLQJ
:KDW�DUH�WKH�IODZV"

(GLWLQJ
+RZ�WR�IL[�WKH�IODZV"

�5H��*HQHUDWLRQ
+RZ�WR��UH��SURGXFH�D

FRUUHFW�RXWSXW"

Four stage of self-correction  
adapted from (Saunders et al 2022)

▸ “LLMs Can’t Self-Correct Reasoning Yet” (Huang et al 

2024): Discrimination is the bottleneck! 

▸ Self-ask isn’t good enough. 

▸ Can explanations help? 

▸ Explanation improves calibration 

▸ Explanation as a user interface for interaction

Figure 1.4: A schematic overview of four stages of self-correction (Figure adapted from Saunders et al.
(2022)).
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Thoughts: this post 
does not imply anything 
offensive.

Answer: Not offensive

Answer: Offensive

Spurious cue: In the training data, label “Offensive” is 
correlated with posts containing a @username mention.

Post: @AnonymousCookie I can’t wait to see the         
          new planet of the apes.

GPT-3 finetuned  
without  

explanations

GPT-3 finetuned  
with  

explanations

Figure 1.5: Adding explanations in finetuning makes GPT-3 more robust to spurious cues, such as
“username mention” (@) correlated with the offensiveness of media posts.

Building on our calibration findings, we then investigate the potential of explanations to enhance

LLMs’ self-correction capabilities in a post-hoc fashion, without parameter updates (Chapter 6).

We propose a four-stage self-correction pipeline comprising Discrimination, Critiquing, Editing, and

(Re-)Generation, as shown in Figure 1.4. While explanations theoretically provide a more transparent

interface for Critiquing and Editing, our results show that this self-correction pipeline does not

improve task performance, even with explanations. The bottleneck lies in the Discimination and

Critiquing stages, where simple few-shot prompting proves insufficient. Notably, incorporating our

consistency-based calibration method improves Discrimination performance and shows potential for

enhancing end task accuracy, assuming oracle inputs in the other three stages.

During finetuning, explanations can be used as training signals to steer a model’s reasoning process.

Specifically, we investigate whether incorporating explanations can mitigate LLMs’ reliance on

spurious cues in the data (Chapter 7). Intuitively, by requiring the LLM to generate explanations,

we provide a signal that can allow the model to focus on features humans find relevant, instead of

spurious features. As exemplified in Figure 1.5, in the SBIC (Social Bias Inference Corpus) dataset

(Sap et al., 2020), the presence of username mentions (@ tags) happens to be correlated with the

task label — whether a social media post is offensive or not. Compared to standard finetuning,
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including explanations makes models remarkably more robust against such spurious cues across four

classification tasks. Moreover, our method works equally well with explanations generated by the

model, implying its applicability to more datasets without human-written explanations.

By investigating the faithfulness and utility of explanations, we hope to bridge the gap between high-

performing LLMs and their trustworthy application in real-world scenarios. Our research will provide

critical insights into the mechanisms behind model decisions and offer practical demonstrations on

how to utilize these insights in real-world applications. Ultimately, we seek to contribute to the

broader goal of making AI systems more transparent, accountable, and beneficial for society.

The main contributions of this thesis are:

• We create a taxonomy of existing model explanation methods and critically review their

strengths and weaknesses.

• We design a faithful-by-construction framework that integrates symbolic reasoning and stochas-

tic generation, guaranteeing the faithfulness of LLM-generated explanations while additionally

improving accuracy on a variety of reasoning tasks.

• We demonstrate the utility of explanations in two stages of model development. When used

during in-context learning, explanations can make models better calibrated in their prediction

and potentially help with self-correction. When used in finetuning, explanations can make

models more robust against learning spurious cues in the training data.

1.1. Thesis Statement

This thesis argues that LLM-generated explanations should be both faithful–accurately reflecting

the model’s reasoning mechanism behind the prediction–and useful–providing value in real-world

application scenarios. We demonstrate that integrating symbolic reasoning into end-to-end NLP

workflows can enhance the faithfulness of explanations while additionally providing performance

gains, across multiple reasoning tasks. In terms of utility, we show that such explanations, when used

as an exposure interface or training signals, improve the calibration, robustness, and self-correction
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capabilities of LLMs.

1.2. Thesis Outline

The thesis is structured as follows:

Chapter 2 introduces the relevant background knowledge for this thesis. We first revisit the history

of LLMs, briefly discussing three recent paradigms in NLP: fully supervised learning, pretrain-and-

finetune, pretrain-and-prompt. Then, we elaborate on the notion of explainability in NLP, discussing

the key concepts, importance, as well as the properties and principles of explanations. Next, we

review the existing work on LLM-generated explanations, identifying the critical gaps in faithfulness

and utility.

Chapter 3 presents our taxonomy of model explanation methods in NLP into five categories: similarity-

based methods, analysis of model-internal structures, backpropagation-based methods, counterfactual

intervention, and self-explanatory models. It contextualizes LLM-generated explanations as one type

of work in the last category and discusses representative studies, strengths, and weaknesses of each

category.

Chapter 4 introduces our faithful-by-construction reasoning framework, FCoT, which enhances the

faithfulness of LLM-generated explanations by integrating symbolic problem-solving with stochastic

translation. We demonstrate its efficacy across various reasoning tasks and discuss its implications

for faithfulness.

Chapter 5 explores the utility of explanations in improving LLM calibration during in-context

learning. We present our method for eliciting confidence estimates from multiple model generations

and show how explanations significantly enhance model calibration, particularly as model size

increases.

Chapter 6 investigates the potential of explanations to facilitate LLM self-correction. It intro-

duces a four-stage self-correction pipeline comprising Discrimination, Critiquing, Editing, and

(Re-)Generation. This chapter analyzes the effectiveness of the pipeline, identifies bottlenecks, and
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discusses the role of consistency-based calibration in improving performance.

Chapter 7 examines the use of explanations during finetuning to mitigate LMs’ reliance on spurious

cues. We demonstrate how including explanations in the training process enhances model robust-

ness across multiple classification tasks, and present the similar efficacy of using model-generated

explanations versus human-written ones.

Chapter 8 concludes the contributions of this thesis, reflecting on the significance of enhancing both

faithfulness and utility of LLM-generated explanations. It also discusses the broader implications of

the work for the field of explainable AI and outlines potential directions for future research.

The overall organization of this thesis is visualized in Figure 1.6.
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§2.1 Large Language 
Models
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§2.3 LLM-Generated 
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§5 Conclusion and 
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for Confidence 
Calibration §5.1 Conclusion
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Evaluation and Application of 
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§3.2 Analysis of model-
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§3.3 Backpropagation-
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Figure 1.6: Organization of the thesis.

1.3. Relevant Publications
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4https://aclanthology.org/
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CHAPTER 2

Background

This thesis pertains to three key notions:

1. Large Language Models (LLMs), the subject to be explained;

2. Explainability, the theoretical concept;

3. LLM-generated explanations, the interplay between the above by using LLMs themselves as

the tool to produce explanations.

This chapter introduces the relevant background knowledge for each notion. We start by providing a

brief history of LLMs, discussing three recent paradigms in NLP. Then, we introduce the concept of

explainability in the field of NLP, elaborating on its definition, importance, as well as the properties

and principles of explanations. Finally, we review the existing work on LLM-generated explanations,

identifying the critical gaps in faithfulness and utility.

2.1. Large Language Models

A language model or LM, at its core, is a statistical representation of language that captures the

probability distribution over sequences of words or tokens. As a result, it can predict the likelihood

of a particular sequence of words occurring in a given language context. These models can be applied

to tasks like classification, summarization, translation, open-ended generation, and so on. As the

foundation of NLP, LMs have marked the progression of this field into three paradigms, as outlined

by Liu et al. (2023).

The first paradigm, prevalent before 2018, was dominated by fully supervised learning. This

era was marked by the development of task-specific models trained on carefully collected input-

output pairs for each target task (Guyon et al., 2002; Bahdanau et al., 2014; Kalchbrenner et al.,

2014; Rakhlin, 2016, i.a.). These models required extensive feature engineering and/or architecture

modifications tailored to each task, limiting their adaptability and scalability across diverse tasks.
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The second paradigm, which occurred around 2018-2019, introduced the “pretrain-and-finetune”

approach. In this paradigm, a model is pretrained and then adapted to downstream tasks via

finetuning. During pretraining, the model is trained on vast corpora of raw text using unsupervised

objectives: For example, auto-regressive (or generative) LMs, exemplified by GPT (Generative Pre-

trained Transformer) (Radford et al., 2019), predict the next word given a prefix (e.g., Following “The

cat caught the”, the next word is most likely “mouse”). Bidirectional LMs like BERT (Bidirectional

Encoder Representations from Transformers) (Devlin et al., 2019), on the other hand, predict missing

words given context on both sides (e.g. in “Paris is the <MASK> of France”, the missing word is

most likely “capital”). Both LMs are based on Transformer, a deep learning architecture that features

the multi-head self-attention mechanism proposed by Vaswani et al. (2017). The pretraining phase of

these LMs aimed to learn general-purpose features of the language. Then, for each downstream task,

pretrained LMs are coupled with additional parameters and finetuned with task-specific objective

functions. Even with a fixed base architecture, the finetuned LMs are surprisingly versatile and

capable on a variety of tasks, ranging from question answering, and Natural Language Inference to

sentiment classification and semantic similarity detection.

French: Où sommes-nous?
English: Where are we?

French: Quel est ton nom?
English: What's your name?

French: Quel âge as-tu?
English: How old are you?

French: C'est mon ami.
English:

Prompt

LLM This is my friend.

Completion

Figure 2.1: LLMs exhibit in-context few-shot learning capabilities: given a few input-output examples
of the target task as the prompt, they can generate the output for a new input.

The most recent paradigm shift, occurring around 2021-2022, is known as “pretrain-and-prompt”.

This shift was driven by the observation that scaling pretrained LMs, both in terms of model size and

training data volume, often led to significant performance improvements (Kaplan et al., 2020). This
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gave rise to truly Large Language Models or LLMs, such as GPT-3 (Brown et al., 2020a)/GPT-4

(OpenAI, 2023), PALM (Chowdhery et al., 2023), and LLAMA (Touvron et al., 2023). Surprisingly,

these LLMs exhibit in-context learning abilities. Given just a few input-output exemplars of a

downstream task presented as a textual prompt, these models can produce desired outputs for new

inputs without parameter updates. For instance, as shown in 2.1, with a few pairs of parallel French

and English texts in the prompt, LLMs can translate a new French text into English. This capability

enables LLMs to adapt to novel methods with minimal labeled data, not only mimicking the way

humans learn from demonstrations. Meanwhile, carefully engineered prompts5 help LLMs become

general-purpose learners, achieving ML’s long-term goal of learning from very few examples.

In summary, the evolution of NLP paradigms reflects a progression from task-specific supervised

learning to the development of versatile and scalable models through pretraining and finetuning,

culminating in the current state where LLMs exhibit remarkable adaptability through prompting.

2.2. Explainability in NLP

In the context of Machine Learning, explainability (also referred to as interpretability) stands for

the extent to which the internal mechanics of a model can be presented in understandable

terms to a human (Lipton, 2016; Murdoch et al., 2019; Barredo Arrieta et al., 2020).

Despite this intuitive notion, explainability has no established technical definition in the community,

which results in numerous papers “wielding the term in a quasi-scientific way” (Lipton, 2016),

essentially referring to different concepts (Doshi-Velez and Kim, 2017; Miller, 2017; Murdoch et al.,

2019). We argue that the confusion mainly lies in the interpretation of two key concepts in the above

definition: what are the “internal mechanics” and who is the “human” .

Internal mechanics. This can refer to either (i) what knowledge a model encodes, or (ii)

why a model makes certain predictions. In the context of NLP, the “what” type of work aims at

the correlational question of to what extent LMs capture various types of human-understandable

knowledge, such as linguistic, commonsense, world knowledge, etc. The “why” type of work addresses
5See Section 2.3 for a discussion on advanced prompting techniques.
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the causal question of what factors (input features, model structures, decision rules, etc.) have led

LMs to certain predictions.

Within the scope of this thesis, we focus on the “why” question, focusing on the faithfulness and

utility of explanations on the reasoning mechanism behind model predictions. Interested readers

can refer to our other work (Lyu et al., 2022b, 2023a) for answers to the “what” question, where we

probe LLMs for their understanding of nuanced linguistic features such as the semantics of recursion

and the stylistics of lexical items.

Human. This refers to the target audience groups of the explanation, each with their specific

goals. Model developers may want to debug the model; fellow researchers may want to find how

the model can be extended/improved; industry practitioners may want to understand whether the

model can robustly generalize to unseen distributions in deployment; model auditors may want to

assess if the model complies with legal and societal regulations; and end users may want to verify

that they can safely rely on the model’s decisions. Depending on the audience, the desired form and

content of the explanation can be drastically different.

2.2.1. Importance of Explainability

We identify three key reasons why explainability is important for NLP:

First, explainability can allow us to discover artifacts in datasets. Solving the dataset does

not mean learning the task, since there can often be unexpected shortcuts (e.g., statistical cues)

in data creation. Models are surprisingly good at exploiting them (Kaushik and Lipton, 2018b;

McCoy et al., 2019b; Geva et al., 2019, i.a.). Explaining the contribution of various features to the

prediction will help us discover such artifacts and create more reliable datasets.

Additionally, explainability can assist in diagnosing a model’s strengths and weaknesses,

and debugging it. Explainability allows us to find where a model succeeds or fails, and fix the

weaknesses before they can be exploited by adversaries. For example, if a model implicitly relies

on unwanted biases on gender and race, we can diagnose and eliminate them through explanations

(Ravfogel et al., 2020). Also, if a model is susceptible to subtle perturbations in the data, it is better
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to discover and guard this in development prior to deployment (Wallace et al., 2019).

Third, explainability may help calibrate user trust in high-stake applications. In domains like

health, law, finance, and human resources, an end user may not trust a model if it only provides a

prediction but no explanation. For example, in computer-aided diagnosis, if an algorithm provides a

prediction along with supporting evidence, such as relevant symptoms, it could be easier for human

decision-makers to determine when to trust the model prediction and when to be skeptical. Empirical

studies have found that explanation quality highly influences the level of user trust in the model

decision (Kunkel et al., 2019; Ye and Durrett, 2022). In some cases, however, it is also possible for

users to blindly trust the model decision simply because of the presence (instead of the content) of

the explanation (Bansal et al., 2021). Even worse, malicious actors can manipulate user trust by

carefully designing misleading explanations (Lakkaraju and Bastani, 2020). All these underscore the

need for rigorous evaluation of explanation methods and emphasize the importance of fostering a

broader understanding and literacy in AI interpretability among end users.

One important caveat lies in the interplay between explainability and performance. In

some cases, it has been found that empirically, there exists a trade-off between these two factors

(Camburu et al., 2018b; Narang et al., 2020; Subramanian et al., 2020; Hase et al., 2020, i.a.), where

a more interpretable model can result in lower accuracy on the end task. Nonetheless, recent

studies show that prompting models to generate explanations via few-shot learning can boost their

performance across a variety of reasoning tasks that they have long struggled (Wei et al., 2022b;

Wang et al., 2022b, i.a.). We will delve into this topic in greater depth in Section 3.5.

2.2.2. Properties of Explanations

We propose to characterize model explanation methods in terms of the following set of properties:

(a) Time: when the explanation happens. An explanation can be post-hoc, i.e., it is produced

after the prediction. Any opaque model is given, and then an external method explains its

predictions. Or, an explanation can be built-in, i.e., it is produced at the same time as the

prediction. This type of model is so-called “self-explanatory”.
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(b) Model accessibility: what parts of the model the explanation method has access to. A black-

box explanation can only see the model’s input and output, while a white-box explanation

can additionally access the model-internal structures and representations.

(c) Scope: where the explanation applies in the dataset. A local explanation only explains a

model’s behavior on a single data point (or a local vicinity of the data point), whereas a

global explanation provides insights into the general reasoning mechanisms for the entire data

distribution.

(d) Unit of explanation: what the explanation is in terms of. A prediction can be explained

in terms of input features (Ribeiro et al., 2016), examples (Wallace et al., 2018), neu-

rons (Sajjad et al., 2022), concepts6 (Rajagopal et al., 2021; Dalvi et al., 2022), feature

interactions (Hao et al., 2021), or a combination of them (Jacovi et al., 2021).

(e) Form of explanation: how the explanation is presented. Typical forms include visu-

alization (Li et al., 2016a), importance scores (Arras et al., 2016), natural language

(Kumar and Talukdar, 2020), or causal graphs (Dalvi et al., 2021). Note that unit and form

are different: to illustrate, for gradient methods in Table 3.1, the unit of explanation is input

features, and the form is importance scores.

2.2.3. Principles of Explanations

To motivate principled design and evaluation of model explanations, existing research identifies

various principles that a good explanation should satisfy. We hereby provide a non-exhaustive

synthesis of these principles.

Faithfulness (also referred to as fidelity or reliability): An explanation should accurately reflect

the reasoning process behind the model’s prediction (Harrington et al., 1985; Ribeiro et al., 2016;

Jacovi and Goldberg, 2020). This is often considered the most fundamental requirement for any

explanation, and sometimes used interchangeably with the term “interpretability” (Jain and Wallace,
6Prior work has different definitions of “concepts”, including but not limited to phrases (Rajagopal et al., 2021)

and high-level features (Jacovi et al., 2021; Abraham et al., 2022).
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2019; Bastings and Filippova, 2020; Jacovi and Goldberg, 2020, i.a.). After all, what is an expla-

nation if it lies about what the model does under the hood? An unfaithful explanation can look

plausible to humans, but has little to do with how the model makes the prediction. For example,

by looking at the attention weights of a sentiment classification model, it may be intuitive to

interpret tokens with higher weights as “more important” to the prediction, whereas empirically it is

questionable if such causal relation exists (Jain and Wallace, 2019).

Plausibility (also referred to as persuasiveness or understandability): An explanation should be

understandable and convincing to the target audience (Herman, 2017; Jacovi and Goldberg, 2020).

This implies that plausibility depends on who the target audience is. For example, a relevance

propagation graph across NN layers may be a perfectly understandable explanation for model

developers, but not at all meaningful to non-expert end users.

Usefulness (also referred to as usability or utility) means that model explanations should be helpful

for a pre-defined goal in real-life applications (Zhou and Shah, 2023; Bansal et al., 2021). Such goals

can include model debugging, model auditing, decision support, knowledge discovery, and so on.

The notion of usefulness facilitates a fair and targeted comparison between different explanation

methods, with pre-defined use cases and target audience groups.

Completeness: An explanation should comprehensively cover all relevant factors to the prediction

(Sundararajan et al., 2017). More formally, for explanations in the form of importance scores, the

importance of all features should sum up to some kind of “total importance” of the model output.

Minimality (also referred to as compactness): An explanation should only include the smallest

number of necessary factors (Halpern and Pearl, 2005; Miller, 2017). Intuitively, this is analogous to

the Occam’s razor principle, which prefers the simplest theory among all competing ones.

Note that the above list is by no means comprehensive. Certain principles such as Input Sensitivity

and Model Sensitivity (Kindermans et al., 2019; Sundararajan et al., 2017; Adebayo et al., 2018)

are omitted for simplicity; interested readers can refer to our survey (Lyu et al., 2023b) for more

details. In this thesis, we will focus on faithfulness and utility, as they are where the critical gaps lie
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for LLM-generated explanations.

2.3. LLM-Generated Explanations

The advent of LLMs represents a significant leap in NLP capabilities, while also presenting new

challenges for the research area of explainability. Their enormous size, combined with the non-

transparent training process, data, weights, and sometimes even probability logits, render many

existing explainability methods formidably expensive or even inapplicable. For example, without the

access to model weights and activations, it is impossible to perform any analysis of attention patterns.

Though certain counterfactual intervention methods only require access to model inputs and outputs,

the cost can be expensive given the large number of model calls with different perturbed inputs.

In light of these challenges, recent work explores the possibility of using LLMs themselves to

generate explanations for their predictions. This is driven by their impressive in-context

learning ability — since LLMs can learn to perform numerous tasks with only a few examples as

demonstration, can explanation generation be thought of as one such task? In other words, can

LLMs be “self-explantory”?7

2.3.1. Free-Text Explanations

Earliest studies prompt LLMs to generate free-text explanations for simple tasks such as

Natural Language Inference (NLI), Commonsense QA, and social bias detection (Wiegreffe et al.,

2022; Marasovic et al., 2022b). These studies found that LLMs at the scale of GPT-3 already

demonstrated potential for generating plausible explanations. These LLM-generated explanations

were sometimes surprisingly more preferable to human-written ones in terms of grammaticality

and generality, while still having room for improvement in other aspects like informativeness.

Meanwhile, Ye and Durrett (2022) found that these explanations are often non-factual (i.e., not

correctly grounded in the input) and inconsistent (i.e., not entailing the final prediction).

Another line of work, called Chain-of-Thought-style (CoT) prompting (Wei et al., 2022b;
7If we believe so, we are making two key assumptions: (a) The reasoning mechanism behind LLM predictions can

be verbalized in human-understandable terms, such as free-text; and (b) LLMs can faithfully verbalize this reasoning
mechanism.
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She has 16 - 3 - 4 = 9 eggs left. So she makes $2 * 9 = $18 per day. The answer is $18.

Output

Q: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her 
friends every day with four. She sells the remainder for $2 per egg. How much does she make every day?

Query

CoT prompting

Figure 2.2: An example output from CoT prompting (Wei et al., 2022b).

Nye et al., 2021a; Kojima et al., 2022), focuses on generating explanations for complex reason-

ing tasks involving multiple steps of reasoning, such as Math Word Problems and Multi-hop QA.

As shown in Figure 2.2, given a complex reasoning problem, an LLM is prompted to generate a

reasoning chain, which spells out each step of reasoning before the final answer. Specifically, the

prompt consists of a few triples of question, reasoning chain, and answer, as in-context exemplars.

This allows pre-trained LLMs to solve unseen problems with much higher accuracy than standard

(or, answer-only) prompting (Brown et al., 2020a), where the exemplars do not contain the reasoning

chain. One limitation, though, is that the model cannot generalize well to questions more difficult

than those seen in the CoT prompt. In other words, CoT does not support easy-to-hard generalization

well.

To address this gap, researchers combine CoT prompting with question decomposition.

Consider the example from Figure 2.3. In Least-to-Most Prompting (Zhou et al., 2022), given

a complex query, the authors first prompt the LLM to break it down into simpler subquestions.

Then, they prompt the LLM to sequentially solve each sub-question, in the original fashion of CoT

prompting. This allows better generalization from easy-to-hard problems than vanilla COT.

All the previous approaches are confined to a single reasoning path. To further encourage the

diversity of reasoning, subsequent studies propose to extend CoT prompting with “vote-and-

rank” strategies. Essentially, instead of greedy sampling, they propose to sample multiple times

from the LLM with the same or slightly varied prompt, resulting in multiple reasoning paths. Then,

they aggregate the reasoning paths and choose the best answer by either voting directly on the
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Q: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her 
friends every day with four. She sells the remainder for $2 per egg. How much does she make every day?

Query

CoT + Question Decomposition 
(e.g. Least-to-Most prompting)

To solve this, we need to first solve: “how many eggs do Janet’s have left?” …

Output

1. How many eggs do Janet’s have left?
Janet has 16 eggs at start. She eats 3 for breakfast and bakes muffins with 4. That 
leaves her with 16 - 3 - 4 = 9 eggs.

2. How much money does she make every day?
She sells every egg for $2. So she makes $2 * 9 = $18 every day. 

The answer is $18.

Output

Step 1: Decompose 
question into 
subquestions

Step 2: Sequentially 
solve subquestions

Figure 2.3: An example output from CoT prompting with question decomposition (e.g. Zhou et al.,
2022).

answers, as in Self-Consistency CoT (Wang et al., 2022b) (Figure 2.4), or voting on the level of

steps, as in DIVERSE (Li et al., 2022). These vote-and-rank techniques can in theory be applied to

any previously mentioned methods, and have been shown to consistently improve their performance

on multiple end tasks.

Despite significant advancements, we contend that the current methodology of generating free-text

explanations using LLMs raises critical concerns regarding both faithfulness and utility.

First, there is no theoretical assurance that LLM-generated explanations are faithful, i.e., they

accurately describe the reasoning mechanism behind the model’s prediction. This is because LLMs

generate texts by sampling tokens from the vocabulary according to a probability distribution. Thus,

there is no intrinsic constraint to ensure that the reasoning process described in the explanation

is the same as the one used to produce the prediction. Empirical research has demonstrated that

LLMs can produce explanations that are systematically unfaithful (Turpin et al., 2023). When LLMs

rely on implicit biases to make predictions, they still generate explanations that look plausible

to humans, hiding these biases. Furthermore, larger models are particularly prone to generating
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Q: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her 
friends every day with four. She sells the remainder for $2 per egg. How much does she make every day?

Query

She has 16 - 3 - 4 = 9 eggs left. So she makes $2 * 9 = 
$18 per day. The answer is $18.

Output

She eats 3 for breakfast, so she has 16 - 3 = 13 left. 
Then she bakes muffins, so she has 13 - 4 = 9 eggs left. 
So she has 9 eggs * $2 = $18.The answer is $18.

Output

CoT + Vote and Rank
(e.g. Self-Consistency CoT)

This means she she sells the remainder for $2 * (16 - 4 - 
3) = $26 per day. The answer is $26.

Output

The answer is $18.

Step 1: Sample a diverse set of reasoning paths
Step 2: Marginalize out reasoning 
paths to aggregate final answers 

Majority vote

Figure 2.4: An example output from CoT prompting with vote-and-rank (e.g. Wang et al., 2022b).

unfaithful explanations (Lanham et al., 2023). This lack of faithfulness can lead to a misleading

perception of “self-interpretability” and result in increased over-reliance on the model, especially

when the explanations appear convincing (Slack et al., 2020).

Second, studies have indicated that LLM-generated explanations often lack practical utility. For

example, in the context of collaborative decision-making, these explanations can be adversarially

helpful (Ajwani et al., 2024). This appears when explanations make incorrect answers look plausible,

potentially leading users to trust them. Additionally, in the scenario of knowledge discovery, only a

small proportion (approximately 20%) of LLM-generated explanations prove to be useful in aiding

lay people to answer previously unseen questions (Joshi et al., 2023). This uncertainty in usefulness

undermines the fundamental purpose of explanations, which is to help the target audience understand

and effectively apply the model’s outputs in real-world situations.
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2.3.2. Structured Explanations

In contrast to free-text explanations, structured explanations involve a non-linear (e.g., tree-like

or graph-like) and less open-ended mode of reasoning. This is because many reasoning problems

require exploration and backtracking (e.g., planning, multi-hop QA), and/or reasoning under certain

constraints (e.g., logical deduction). These issues can be addressed by integrating explanations with

structures, such as logical constraints, symbolic programs, and non-linear exploration strategies.

Figure 2.5: An example output from one type of structured explanations with logical constraints —
Maieutic prompting (figure from Jung et al. (2022a)).

Logical constraints provide a framework for reasoning that adheres to formal rules of inference.

In the context of structured explanations, these constraints ensure that the explanation follows a

logically sound path, maintaining consistency and validity throughout the reasoning process. For

example, Maieutic Prompting in Figure 2.5 (Jung et al., 2022b) prompts the LLM to generate a

maieutic tree, which consists of abductive and recursive explanations as well as the logical relation

among them. Each node represents a proposition, and each edge stands for a weighted logical

relation (entailment, contradiction, neutral) between two propositions. Then, each proposition is

assigned a truth value, such that the sum of the weights of satisfied relation constraints is maximized.

Similarly, SatLM (Ye et al., 2024) prompts the LLM to generate a declarative task specification as

a set of logical constraints. Then, it calls an off-the-shelf automated theorem prover to derive the

final answer. By incorporating these constraints, explanations become more rigorous and verifiable,

which are particularly effective on multi-hop QA, arithmetic reasoning, and logical reasoning tasks.

Symbolic programs offer a powerful means of representing and manipulating abstract entities
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We start with 15 trees.

Later we have 21 trees.

The difference must be the number of trees they 
planted.

So, they must have planted 21-15 = 6 trees.

The answer is 6.

trees_begin = 15

trees_end = 21

trees_today = trees_end - trees_begin

answer = trees_today

Output Output

There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are 
done, there will be 21 trees. How many trees did the grove workers plant today?

Query

Answer: 6
Python Interpreter

>>>       >>>

PAL / PoTCoT

Figure 2.6: An example output from two types of explanations with symbolic programs — Program
of Thought (PoT) (Chen et al., 2022b) and Program-Aided LMs (PAL) Gao et al. (2022).

and operations deterministically. Two concurrent approaches illustrated in Figure 2.6, Program-

of-Thought (PoT) (Chen et al., 2022b) and Program-Aided Language Models (PAL) (Gao et al.,

2022), both prompt the LLM to generate reasoning chains in the format of a Python program and

obtain the final answer by executing the program with a deterministic Python interpreter. This

process essentially offload the answer derivation process to the dedicated program executor, allowing

the LLM to solely focus on generating the symbolic representation of the problem. Compared

with free-text explanations, this approach leads to better performance on multiple arithmetic and

symbolic reasoning tasks.

Non-linear exploration strategies is designed to address the limitation that chain-like structures

can limit the scope of exploration, thus making it difficult to recover from errors in the reasoning path.

Instead of following a single, straightforward trajectory, non-linear strategies allow for backtracking,

branching, and revisiting previous steps as necessary. As shown in Figure 2.7, Tree of Thoughts (ToT)

(Yao et al., 2024) extends standard CoT by allowing the model to consider multiple branches of

reasoning paths. It determines which ones to pursue by self-evaluating each branch, as well as looking

ahead or backtracking when necessary. On top of that, Graph of Thoughts (Besta et al., 2024) further
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2

Tree of Thoughts [Yao et al. 2023] Graph of Thoughts [Besta et al. 2023] CoT/PoT

Figure 2.7: An example output from two types of explanations with non-linear exploration strategies
— Tree of Thoughts (Yao et al., 2024) and Graph of Thoughts (Besta et al., 2024). Figure from
Chu et al. (2023).

introduces loops and N-to-1 connections between steps, which improves subproblem aggregation and

self-verification. These methods are particularly relevant in problem-solving scenarios where the

optimal solution path is not immediately apparent, such as in planning and strategic games (e.g.,

Crosswords and Game of 24).

Work in this thesis, in particular Chapter 4 on Faithful CoT, is one instance of integrating symbolic

programs with explanations. We highlight a few key differences between our work and concurrent

work on the same topic (Gao et al., 2022; Chen et al., 2022b): (a) In our approach, we first decompose

the original problem into a dependency graph of subproblems and then generate symbolic programs

to solve each subproblem, effectively reducing the task difficulty for the LLM at each stage; in

contrast, concurrent studies directly generate symbolic program to solve the original problem. (b)

We demonstrate the generalizability of our approach to multiple symbolic languages beyond Python

and multiple domains beyond arithmetic reasoning and simple symbolic reasoning. In particular,

we innovatively recast a diverse set of realistic tasks (Planning, Multi-hop QA, and Relational

Inference) into a symbolic representation, which allows us to tackle them with a single framework.

(c) Empirically, our approach performs better than concurrent approaches on knowledge-intensive

tasks (Appendix A.1).
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2.4. Summary

In this chapter, we have discussed the foundational concepts pertinent to the theme of this thesis,

namely LLMs, explainability, and LLM-generated explanations. We began by discussing the evolution

and significance of LLMs, highlighting their role in various NLP tasks and the transition through

different paradigms of model development.

We then delved into the theoretical concept of explainability, emphasizing its importance in making

AI systems more reliable and trustworthy. We discussed various properties and principles that

constitute effective explanations, laying the groundwork for assessing the faithfulness and utility of

explanations produced by LLMs.

Finally, we reviewed recent advances in LLM-generated explanations, identifying critical gaps in

faithfulness and utility. This review highlighted the challenges and opportunities in leveraging LLMs

to generate explanations that are both reliable and beneficial. By identifying these gaps, we set the

stage for the subsequent chapters, where we propose and evaluate novel methods to enhance the

faithfulness and utility of LLM-generated explanations.

This chapter’s discussion provides the necessary background to understand the complexities involved

in generating faithful and useful explanations by LLMs. It also establishes the context for the

taxonomy and methodological contributions that follow. In the next chapter, we will present a

detailed taxonomy of model explanation methods in NLP, categorizing existing approaches and

situating LLM-generated explanations within this broader landscape.
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CHAPTER 3

A Taxonomy of Model Explanation Methods in NLP

Building upon the foundational concepts discussed in the Chapter 2, we now turn our focus to

categorizing and examining various model explanation methods in NLP.

In this chapter, we provide a taxonomy to categorize existing model explanation methods in NLP into

five families: similarity-based methods, analysis of model-internal structures, backpropagation-based

methods, counterfactual intervention, and self-explanatory models. A considerable amount of this

chapter is based on our survey article titled “Towards Faithful Model Explanation in NLP: A Survey”

(Lyu et al., 2022a). This article also includes a deep dive into the concept of faithfulness, a critical

review of faithfulness evaluation methods, and a discussion on challenges and opportunities in

explainable NLP from the perspective of faithfulness, omitted for brevity.

Method Time
Model

accessibility Scope
Unit of

explanation
Form of

explanation

Similarity-based
methods post-hoc white-box local examples,

concepts importance scores

Analysis of
model-internal

structures
post-hoc white-box local,

global
features,

interactions
visualization,

importance scores

Backpropagation
-based methods post-hoc white-box local features,

interactions
visualization,

importance scores

Counterfactual
intervention post-hoc black-box,

white-box
local,
global

features,
examples,
concepts

importance scores

Self-explanatory
models built-in white-box local,

global

features,
examples,
concepts

importance scores,
natural language,

causal graphs

Table 3.1: Comparison of different model explanation methods in terms of their properties. Different
colors denote different values of a property. See Section 2.2.2 for details.

Our taxonomy is driven by the properties of explanations discussed in Section 2.2.2. As a preview,

Table 3.1 compares these methods to be discussed in terms of the properties.
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Note that many existing taxonomies do not explicitly state which properties are taken into account,

thus often producing confusing terms. For instance, the term saliency methods has been widely used

to refer to “backpropagation-based methods” in our taxonomy. However, saliency only describes the

form and the unit of explanation – importance scores of input features. Then, technically speaking,

all methods in Table 3.1 have instances that can be called a saliency method. In our taxonomy, we

characterize each method using all these properties, so as to provide a clearer, mutually exclusive

distinction.

Next, we will introduce the five method families in detail. We will illustrate each of them with

representative studies, and discuss their key strengths and weaknesses.8 At the end of this chapter,

we will situate LLM-generated explanations within this taxonomy, laying the groundwork for the

novel frameworks and techniques proposed in the following chapters of this thesis.

3.1. Similarity-based methods

Similarity-based methods provide explanations in terms of training examples. Specifically, in order

to explain the model prediction on a test example, they find its most similar9 training examples in

the learned representation space, as support for the current prediction. This is akin to how humans

explain their actions by analogy, e.g., doctors make diagnoses based on past cases.

Caruana et al. (1999) theoretically formalize the earliest approach of this kind, named “case-based

explanation”. Based on the learned hidden activations of the trained model, it finds the test example’s

k-Nearest Neighbors (kNN) in the training set as an explanation. Note that the similarity is defined

in terms of the model’s learned representation space but not the input feature space, since otherwise

the explanation would be model-independent.

Wallace et al. (2018) also use the kNN search algorithm; but instead of deriving a post-hoc explana-

tion, they replace the model’s final softmax classifier with a kNN classifier at test time. Concretely,

during training, the model architecture is unmodified. Then, with the trained parameters fixed,
8Due to space considerations, the content has been significantly abridged; please see our survey (Lyu et al., 2022a)

for a more comprehensive version.
9In practice, commonly used similarity metrics include cosine, Euclidean, etc.

28



each training example is passed through the model again, and their representations are saved. The

inference is done with a modified architecture: a test example is classified based on the labels of

its kNNs from the training examples in the learned representation space. However, the resulting

explanations are only evaluated based on whether the explanations align with human perception of

feature importance on qualitative examples, which is irrelevant to faithfulness.

Rajagopal et al. (2021) introduce a self-explanatory classification model, where one component, the

“global interpretable layer”, also uses the idea of similarity-based explanation. This layer essentially

identifies the most similar concepts (phrases in this case) in the training data for a given test

example. Their approach is mainly evaluated in terms of plausibility, i.e., how adequate/understand-

able/trustworthy an explanation is based on human judgment. One metric touches on faithfulness —

human simulatability — however, the authors only report the relative difference with and without

the explanation instead of the absolute scores, which makes it hard to determine how faithful the

approach is.

3.1.1. Strengths and Weaknesses

Similarity-based methods exhibit several strengths. First, they are intuitive to humans since the

justification by analogy paradigm has long been established. Second, they also easy to implement,

as no re-training or data manipulation is needed. The similarity scores are available by simply

passing examples through the trained model to obtain the model’s representation of them. Third,

they are highly model-agnostic, since all kinds of Neural Networks have a representation space,

and any similarity metric (cosine, Euclidean, etc.) can be easily applied. Finally, certain similarity-

based explanations are rated by human subjects as more understandable and trustworthy

(Rajagopal et al., 2021) compared to several other baselines in the families of backpropagation-based

methods and counterfactual intervention.

Nevertheless, there are also several weaknesses: First, most similarity-based methods only provide

the user with the outcome of the model’s reasoning process (i.e., which examples are similar in

the learned space), but do not shed light on how the model reasons (i.e., how the space is learned)

(Caruana et al., 1999). Second, existing work mostly evaluates the resulting explanations with
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plausibility-related metrics, including adequacy, relevance, understandability, etc., with human

judgments. However, plausibility does not entail faithfulness, as models do not necessarily use

a similar reasoning mechanism as humans do. Thus, it is questionable whether similarity-based

methods can truly establish causality between model predictions and the explanation. Additionally,

the space of exploration is confined to the training set. This inherently limits the diversity and

scope of the explanation, potentially leaving certain edge cases unexplained. It also implies that

the behavior of similarity-based methods depends on the distribution of the training data. In other

words, the explanation outcomes may vary considerably if the training set does not well represent the

broader data distribution or is biased in some manner. Finally, similarity-based methods inherently

offer instance-level explanations and do not provide insights into the feature-level contribution

to the prediction. This lack of granularity can limit the potential for actionable insights.

3.2. Analysis of model-internal structures

The analysis of model-internal structures, such as individual neurons and mechanisms like convolution

or attention, aims to elucidate the inner workings of NLP models. Common techniques include

visualization (e.g., activation heatmaps), clustering (e.g., neurons with similar functions), and

correlation analysis (e.g., between neuron activations and linguistic properties).

3.2.1. Analysis on Neurons

Early interest in neural models in NLP focused on finding interpretable functions of individual neurons.

Karpathy et al. (2015) examined neuron activation patterns in a character-level LSTM language

model, identifying neurons that activate within quotes or specific syntactic structures. Subsequent

studies by Li et al. (2016a) and Strobelt et al. (2018) found neurons in LSTMs that respond to

language compositions such as negation and adjective-noun pairs. Conversely, Poerner et al. (2018)

and Hiebert et al. (2018) explored inputs that produce similar neuron activations, showing that

models like GRUs and LSTMs capture orthographic and grammatical patterns.

3.2.2. Analysis on Attention Mechanism

The Transformer architecture (Vaswani et al., 2017), particularly its self-attention mechanism, has

become foundational in modern NLP. Self-attention assigns weights to input vectors, which are
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Figure 3.1: Attention weights from [CLS] to all tokens in a BERT sentiment classification model,
created using BertViz Vig (2019). Each color represents an attention head. Lines represent averaged
attention weights over all heads. Darker shades indicate higher weights.

then used to compute weighted averages, producing composite embeddings. This mechanism is

often interpreted as highlighting the importance of input tokens to the output. For example, in

a BERT-based classifier shown in Figure 3.1, the final “[CLS]” token might show high attention

weights for tokens like “great” and “love” in a movie review, which can be understood as the most

important features supporting the positive sentiment classification.

However, there has been a long debate on whether such explanations are faithful. Jain and Wallace

(2019) demonstrated that adversarial attention distributions could significantly alter attention weights

without changing model predictions, questioning the causal link between attention and output.

Wiegreffe and Pinter (2019) countered that adversarial distributions are not naturally learned by

models, suggesting that models typically do not focus on uninformative words. Pruthi et al. (2020)

further refuted this by showing that models could be trained to produce misleading attention weights

intentionally.

To improve the faithfulness of attention, researchers have proposed various methods. Tutek and Snajder

(2020) introduced regularization techniques to make hidden states more representative of input

features. Abnar and Zuidema (2020) proposed Attention Rollout and Attention Flow to capture

global information flow, showing increased plausibility and faithfulness. Additionally, tying attention

to other explanation methods, especially backpropagation-based ones, has been suggested to enhance
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causality (Hao et al., 2021; Lu et al., 2021).

Despite the controversy on faithfulness, recent cognitive science studies show that attention mecha-

nisms in models share similarities with human brain activation patterns during tasks like masked

word prediction and eye fixation during reading, indicating a convergence between how models and

humans process language.

3.2.3. Strengths and Weaknesses

To summarize, the analysis of model-internal structures, as a family of explanation methods, has

several strengths. First, the visualization of model-internal structures is intuitive and readable

to humans, especially end-users. Second, the attention mechanism can capture the interaction

between features, whereas many other methods can only capture the influence of individual features

themselves. Third, model weights are easily accessible and computationally efficient, compared

to other methods.

However, these methods also suffer from several key weaknesses: First, it is questionable to what

extent raw attention weights represent causal contribution, as mentioned in the debate on

the faithfulness of attention as explanation. Second, the lack of faithfulness may be due to our

interpretation of attention weights on intermediate hidden states as the importance of input

features; however, hidden states have already mixed in contextual information through previous

self-attention layers, and therefore may not be representative of input features. Finally, existing

methods often focus on attention weights in a single layer and/or from a single token position. This

may reflect how much the model attends to each input position locally, but without taking the

whole computation path into account. Methods that characterize the global information flow may

be a better alternative (Abnar and Zuidema, 2020, i.a.).

3.3. Backpropagation-based methods

Backpropagation-based methods aim to identify the contribution of input features via a backward pass

through the model, propagating the importance (or relevance, used interchangeably in the literature)

attribution scores from the output layer to the input features. They can be further distinguished
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into two categories, gradient methods and propagation methods. Gradient methods follow

standard backpropagation rules. In other words, they directly compute the gradient (or some variant

of it) of the output w.r.t the input features via the chain rule, assuming features with larger gradient

values are more influential to the model prediction. By contrast, propagation methods define custom

backpropagation rules for different layer types and compute the relevance scores layer by layer until

reaching the input. This is believed to better capture the redistribution of relevance through special

layers, such as ReLU.

Most ideas in this family have been first proposed in Computer Vision (CV). In the following

subsections, we will explain their origin in vision and adaptation to language.

3.3.1. Gradient methods

Gradient methods compute the gradient of the model output with respect to each input feature,

assuming features with larger absolute gradient values are more influential. The simplest approach is

to use the gradient itself (referred to as Simple Gradients or Vanilla Gradients) (Baehrens et al.,

2010; Simonyan et al., 2014). The gradient’s sign indicates whether a feature contributes positively

or negatively, and its magnitude indicates the extent of influence. However, Vanilla Gradients suffer

from issues like saturation. For common neuron activation functions like sigmoid (y = 1
1+e−x ) and

tanh (y = ex−e−x

ex+e−x ), when the absolute value of an input feature is large enough, it results in a very

small gradient locally, although the feature may have a large contribution to the output y globally.

Gradient×Input (Denil et al., 2015) was proposed to address this issue by computing the relevance

score as the product of the input feature and its gradient, analogous to linear models. Integrated

Gradients (Sundararajan et al., 2017) takes a different approach to estimate the global relevance

of a feature by comparing the input with a baseline input (e.g., an all-black image for vision and

a sentence with all-zero token embeddings for language). However, this method can still result in

visually noisy relevance maps in CV. SmoothGrad (Smilkov et al., 2017) aims to reduce this noise

by averaging the relevance maps of noisy copies of the input, improving visual clarity empirically.

Nevertheless, this only pertains to plausibility, but not faithfulness.
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In NLP, both Simple Gradients and Integrated Gradients have been used, primarily for sequence

classification tasks. For instance, Li et al. (2016a) used Simple Gradients to explain token importance

in RNN models, while Hao et al. (2021) and Janizek et al. (2021) adapted Integrated Gradients for

Transformer models on tasks like paraphrase detection and sentiment classification.

3.3.2. Propagation methods

Propagation methods use custom backward passes with specific rules for different layers. For example,

DeconvNet (Zeiler and Fergus, 2014) and Guided BackPropagation (GBP) (Springenberg et al.,

2015) define custom rules for ReLU units, zeroing out relevance only under certain conditions. These

methods produce clearer visualizations than Vanilla Gradients. However, it is shown that both

methods are essentially doing (partial) input recovery, which is unrelated to the network’s decision

(Nie et al., 2018).

Layerwise Relevance Propagation (LRP) (Bach et al., 2015) generalizes this approach with a

high-level Relevance Conservation constraint, ensuring total incoming relevance equals total outgoing

relevance for each neuron. LRP has shown improved faithfulness in perturbation-based evaluations,

such as token deletion tests in NLP tasks. However, it still suffers from the same saturation issue

mentioned in Section 3.3.1.

To address LRP’s failure with saturation, two reference-based methods, DeepLift (Shrikumar et al.,

2017) and Deep-Taylor Decomposition (DTD) (Montavon et al., 2017), have been introduced.

Analogous to Integrated Gradients, they aim to measure the global contribution of input features by

finding a reference point, or baseline, to compare with the input. The two methods differ in how the

baseline input is chosen. DeepLift empirically chooses a baseline input which results in a neutral

output, but DTD additionally requires the baseline to lie in the vicinity of the original input. Both

methods avoid saturation issues.In NLP, Chefer et al. (2021) extend DTD to explain the decision of

Transformer models on sentiment classification. However, the explanations are evaluated against

human-annotated token relevance, therefore also unrelated to faithfulness.
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3.3.3. Strengths and Weaknesses

Summarizing the discussion above, backpropagation-based methods have several key strengths.

First, they generate a spectrum of feature relevance scores, which is easily understandable for all

kinds of target users. Second, the computational cost of these methods can vary significantly,

but in general, they are relatively efficient to compute. Gradient-based techniques only require

a handful of calls to the model’s backward function. On the other hand, propagation methods

involve a customized implementation of the backward pass, allowing for precise control over the

relevance redistribution process while necessitating more complex computation.10 Third, in terms of

faithfulness, gradients (and variants) are intrinsically tied to the influence of input features on the

prediction. Empirically, certain recently proposed methods (e.g., Layerwise Relevance Propagation,

DeepLift, Deep-Taylor Decomposition) are shown to be more faithful than previous baselines via

perturbation-based evaluation, as mentioned before. Finally, unlike most methods for the analysis of

model-internal structures (e.g., raw attention weights), backpropagation-based methods take the

entire computation path into account.

At the same time, these methods are far from perfect due to a number of weaknesses. First, most

existing backpropagation-based methods target low-level features only, e.g., pixels in vision and

input tokens in language. It is unclear how to compute any sort of gradient w.r.t. higher-level

features like case, gender, part-of-speech, semantic role, syntactic dependency, coreference, discourse

relations, and so on. Second, it is questionable how to apply such methods to non-classification

tasks, especially when there is no single output of the model, e.g., text generation or structured

prediction. Additionally, as detailed before, certain methods violate axiomatic principles of

faithfulness, e.g., Input Sensitivity and Model Sensitivity (Sundararajan et al., 2017). Lastly, the

explanation can be unstable, i.e., minimally different inputs can lead to drastically different relevance

maps (Ghorbani et al., 2019; Feng et al., 2018). Most methods are not empirically evaluated on

faithfulness when they are first proposed, with only a few exceptions mentioned above. Moreover,
10In general, their computational cost is lower than counterfactual intervention, which typically requires multiple

forward passes in addition, but higher than internal-structure analysis, which typically requires no additional model
calls. It’s worth noting that these computational costs exist along a continuum rather than being binary categories.
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subsequent researchers find many systematic deficiencies of them in ad-hoc evaluations. As mentioned

before, Guided BackPropagation and DeconvNet are shown to be only doing partial input recovery,

regardless of the model’s behavior (Nie et al., 2018). In addition, certain explanations (including

Simple Gradients, Integrated Gradients, and SmoothGrad) can be adversarially manipulated, i.e.,

one can construct entirely different gradient distributions with little influence on the prediction

(Wang et al., 2020).

3.4. Counterfactual intervention

The notion of counterfactual reasoning stems from the causality literature in social science: “Given

two co-occurring events A and B, A is said to cause B if, under some hypothetical counterfactual case

that A did not occur, B would not have occurred” (Roese and Olson, 1995; Winship and Morgan,

1999; Lipton, 2016). In the context of machine learning, counterfactual intervention methods explain

the causal effect between a feature/concept/example and the prediction by erasing or perturbing it

and observing the change in the prediction. A larger change indicates stronger importance.

One axis along which we can categorize existing studies is where the intervention happens, in inputs

or in model representations. The former manipulates the input and passes it through the original

model; by contrast, the latter directly intervenes in the model-internal representations, e.g., neurons

or layers. The rest of this section will elaborate on the two categories accordingly.

3.4.1. Input Intervention

Input intervention methods can be further categorized along two dimensions: the target and the

operation. The target refers to “what is affected by the intervention”, normally input features (e.g.,

tokens) or examples (the entire input instance). The operation stands for the specific intervention

method, which can be erasure (masking out or deleting the target) or perturbation (changing

the value of the target). We will first classify existing work based on the target, and then on the

operation.
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Feature-targeted Intervention

Early feature-targeted methods mostly relied on erasure. One common approach is leave-one-out

(Li et al., 2016b), which erases single features (e.g., tokens) and assesses the resulting change in

prediction. However, this method captures only the linear contribution of single features and cannot

handle higher-order interactions.

To address this, some methods erase subsets of features. For example, Li et al. (2016b) aimed to find

the minimum subset of input tokens to erase to flip the model’s decision. Alternatively, Ribeiro et al.

(2018) sought to find the minimum subset of tokens to keep the decision unchanged, known as

"Anchors". Both methods rely on approximate searches due to the intractability of finding exact

subsets. Surrogate models offer another approach. LIME (Local Interpretable Model-agnostic

Explanations) (Ribeiro et al., 2016) approximates a black-box model locally with an interpretable

model. SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017) uses additive surrogate

models based on game theory to explain feature contributions. LIME is evaluated for faithfulness

through white-box tests, and SHAP is theoretically locally faithful.

A common problem with all the above feature erasure methods is that they can produce out-of-

distribution (OOD) inputs, for example, ungrammatical or nonsensical sentences after tokens are

masked out. Exploiting this weakness, Slack et al. (2020) show that it is possible to fool popular

erasure-based explanation methods with an adversarial model, which relies on biased features on

in-distribution inputs and unbiased ones on OOD inputs.

This motivates the other operation – perturbation – as another type of feature-targeted intervention.

Compared to simple erasure, perturbing the value of the feature is less likely to result in OOD inputs.

The outcome of such perturbations is called counterfactual examples, which should be meaningfully

different from the original while being semantically coherent.

Generating high-quality counterfactual examples is non-trivial, as they need to simultaneously

accord with the counterfactual target label, be semantically coherent, and only differ from the

original example in the intended feature. The most reliable (yet expensive) approach to collect
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counterfactual examples is still manual creation, as in Kaushik et al. (2020) and Abraham et al.

(2022). However, recent studies propose promising ways to automate their generation (Calderon et al.,

2022; Zmigrod et al., 2019; Amini et al., 2022; Wu et al., 2021).

Example-targeted Intervention

In addition to feature-targeted intervention, counterfactual input intervention can also directly happen

on the level of examples. A representative method is called influence functions (Koh and Liang,

2017), which is designed to explain which training examples most influence the prediction of a test

example. This may remind us of similarity-based methods in Section 3.1. Though sharing the same

unit of explanation (training instances), similarity-based methods rely on similarity search, while

influence functions rely on counterfactual reasoning by approximating the change in prediction if a

training example were absent or slightly changed. This method has been adapted to NLP (Han et al.,

2020) after its invention in CV, but the approximation’s accuracy can vary, raising concerns about

reliability (Basu et al., 2021).

3.4.2. Model Representation Intervention

Similar to input intervention methods, we also categorize model representation intervention methods

according to the target and the operation. Here, the target can typically be individual neurons or

high-level feature representations. The operation still involves erasure and perturbation. We

will still introduce existing work along the line of target first and operation next.

Neuron-targeted Intervention

By intervening in individual neurons in an NN, one can explain the importance of each neuron to

the prediction. The intervention can still be either erasure or perturbation.

The simplest form of erasure is still leave-one-out. Using the same strategy as with input features,

Li et al. (2016b) study the effect of zeroing out a single dimension in hidden units on the prediction.

Bau et al. (2019) improve the efficiency of this method, by searching for important neurons in a

guided fashion instead of brute-force enumeration.

Apart from erasure, perturbation is another form of neuron-targeted intervention. One representative
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example is causal mediation analysis (Vig et al., 2020), which measures the effect of a control

variable (input) on a response variable (output) mediated by an intermediate variable (neuron). This

framework has been used to analyze biases and linguistic phenomena in models (Vig et al., 2020).

Feature-representation-targeted Intervention

Beyond intervening in neurons, directly targeting feature representations in the model allows us to

answer more insightful questions like “Is some high-level feature, e.g., syntax tree, used in prediction?”.

Similar to neuron-targeted intervention, the most intuitive way to perform an intervention on feature

representation is erasure. Two pieces of concurrent work, Amnesic Probing (Elazar et al., 2021)

and CausalLM (Feder et al., 2021), are representative examples, erase target features from model

representations to measure their impact on predictions. They exploit different algorithms to erase

the target feature from the model representation, via either Iterative Null-space Projection (INLP)

(Ravfogel et al., 2020) or adversarial training. However, both face challenges in that they cannot

guarantee to remove the target feature entirely; even worse, they may end up destroying other

task-relevant features.

Taking a step back, even with perfect erasure techniques, a higher-level problem with the feature

representation erasure methodology lies in unrealistic representations, similar to OOD inputs in the

case of input erasure.

To address this issue, perturbation-based methods targeting feature representations are proposed

(Ravfogel et al., 2021; Tucker et al., 2021). Instead of removing the feature altogether, they manipu-

late the feature value, such that the same feature (e.g. syntax tree) is represented counterfactually

(e.g. with different structures) in the model. For example, a syntactically ambiguous sentence such

as I saw the boy and the girl [MASK] tall. can be interpreted as either [I saw the boy] and [the girl

[MASK] tall]., or I saw [the boy and the girl [MASK] tall]. Therefore, [MASK] should be either

singular or plural, if the model relies on syntax tree in word prediction.
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3.4.3. Strengths and Weaknesses

Overall, there are several advantages unique to counterfactual intervention methods. First, having

its root in the causality literature, counterfactual intervention is therefore designed to capture

causal instead of mere correlational effects between inputs and outputs. Second, compared to

other methods, counterfactual intervention methods are more often explicitly evaluated in terms of

faithfulness (e.g., Ribeiro et al., 2018; De Cao et al., 2020; Ribeiro et al., 2016; Lundberg and Lee,

2017; Tsang et al., 2020; Feder et al., 2021), and often outperform existing baselines.

However, they also share a number of disadvantages. First, compared to other methods, counterfactual

intervention is relatively more expensive in computational cost, normally requiring multiple

forward passes and modifications to the model representation. Second, as explained before, erasure-

based intervention can result in nonsensical inputs or representations, which sometimes allow

adversaries to manipulate the explanation (Slack et al., 2020). Third, intervening in a single feature

relies on the assumption that features are independent, failing to capture feature interactions.

Additionally, interventions are often overly specific to the particular example (Wallace et al.,

2020), lacking broader insights about the model. Finally, counterfactual intervention may suffer from

hindsight bias (De Cao et al., 2020), which questions the foundation of counterfactual reasoning.

Specifically, the fact that a feature can be dropped without influencing the prediction might not

mean that the model “knows” that it can be dropped and has not used it in the original prediction.11

3.5. Self-explanatory Models

In contrast with all the above post-hoc methods, self-explanatory models provide built-in explanations.

Typically, explanations can be in the form of feature importance scores, natural language, causal

graphs, or the network architecture itself.

Prior work on self-explanatory models can be broadly categorized into two lines based on how the
11De Cao et al. (2020) illustrates this point with an intuitive example of the Reading Comprehension task, where

a model is given a paragraph and a question, and should identify an answer span in the paragraph. Now, using
counterfactual intervention, if we mask out everything except the answer in the paragraph, the model will for sure
predict the gold span. Nonetheless, this does not imply that everything else is unimportant for the model’s original
prediction. The issue again calls for a rethinking of the fundamental assumptions of counterfactual reasoning.
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explanation is formed : explainable architecture or generating explanations. The former relies

on a transparent model architecture, such that no extra explanation is necessary. The latter, though,

may still involve opaque architectures, but generates explicit explanations as a byproduct of the

inference process.

3.5.1. Explainable Architecture

Explainable architectures are designed to be inherently interpretable, drawing inspiration from classic

machine learning models like decision trees and linear regression.

Neural Module Networks (NMNs) are one representative example, specifically in the context

of Question Answering (QA) tasks. They decompose a complex question into a sequence of steps

or modules. For example, NMNs parse the input question into a program of learnable modules,

which are then executed to derive the answer (Andreas et al., 2016; Hu et al., 2017). This approach

has been effective in various visual QA tasks and has been extended to language-only domains,

although challenges remain in ensuring the modules’ behavior aligns with their intended functions

(Gupta et al., 2020). Despite their transparency, NMNs face faithfulness issues. The modules may

not perform their intended functions, as their parameters are often learned end-to-end, which may

not reflect the actual reasoning process (Subramanian et al., 2020). Additionally, symbolic modules

may not capture the flexible semantics of natural language, limiting their applicability to complex

tasks.

Models with constraints are another example of explainable architectures. The idea is to

incorporate constraints into neural networks from classic interpretable models, like generalized

linear regression (Alvarez-Melis and Jaakkola, 2018) and finite-state automata (Schwartz et al.,

2018; Deutsch et al., 2019; Jiang et al., 2020). Still, a major challenge lies in the trade-off between

interpretability and performance.

3.5.2. Generating Explanations

Besides using architecture as an implicit explanation, another type of self-explanatory model learns

to generate an explicit explanation as an additional task, aside from making the prediction. This
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line of work is the most relevant to the research presented in my thesis.

To supervise self-explanatory models, human-written explanations are often used as an additional

training signal, along with the end-task label. According to the dependency relationship between

the predictor and the explainer, we can classify existing work into three categories: predict-then-

explain, explain-then-predict, and jointly-predict-and-explain.

Predict-then-explain

In this framework, a standard predictor first makes a prediction, which is then justified by an

explainer. This is analogous to previous post-hoc explanation methods. While widely used, it

suffers from the same faithfulness challenge as all other post-hoc methods: since the predictor does

not depend on the explainer, there is no guarantee that the explanation accurately reflects the

reasoning process behind the prediction. Moreover, as the supervision comes from human-provided

explanations, the explainer is only explicitly optimized in terms of plausibility, but not faithfulness.

Explain-then-predict

Here, the explainer generates an explanation first, which then serves as the only input for the

predictor. This approach aims to make the prediction faithful by construction since the prediction

relies solely on the explanation. One common method is extractive rationales, where a part of the

input sufficient for prediction is extracted and used (Lei et al., 2016; Bastings et al., 2019). Although

rationale-based models seem to be “faithful by construction”, they are not necessarily so. The

predictor might only be exploiting superficial patterns in the rationale (e.g., the number of tokens

that are kept (Jacovi and Goldberg, 2021).

Alternative to extracted rationales, a more flexible form of explanation is natural language (also

called free-text explanation). Similarly, the explanation might contain cues to the label. For example,

in an NLI task, patterns like X implies Y / X is a type of Y in the explanation oftentimes indicate

Entailment, while X is not the same as Y is a strong signal of Contradiction. To overcome

this issue, Kumar and Talukdar (2020) propose the Natural language Inference over Label-specific

Explanations (NILE) model, where every class label has a corresponding explainer. All three
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explanations are fed to the predictor, which makes a decision after comparing them.

Jointly-predict-and-explain

This approach can have two structures: (i) there are still an explainer and a predictor, but the

predictor can access both the explanation and the input example; (ii) there are no separate explainer

and predictor at all — everything is produced jointly.

Approaches in (i) suffer from a similar faithfulness challenge as predict-and-explain methods do,

because the predictor can make its decision only based on the input using whatever reasoning

mechanism, while entirely ignoring the explanation Rajani et al. (2019); Kumar and Talukdar (2020).

For works of type (ii), given the input example as the prompt, a generation model outputs a

continuation including both the explanation and the prediction in some designated order. This

is analogous to any other generation task. Existing work along this line differs in the choice

of the generation model and the end task. Early studies train task-specific models to generate

free-text explanations for tasks like algebraic reasoning, NLI, sentiment classification, and QA.

Ling et al. (2017); Narang et al. (2020). Tafjord et al. (2021); Dalvi et al. (2021); Hong et al. (2022)

then develop methods to generate structured proofs for deductive reasoning, where each step is

produced and verified iteratively to ensure faithfulness. All these methods require human-provided

explanations as training data, while recent advances in the in-context learning ability of LLMs have

shown promise in generating explanations in a few-shot fashion. These methods, which we have

detailed in Section 2.3, prompt models to generate reasoning chains before the final answers, which

prove effective in improving their performance on a variety of complex reasoning tasks (Wei et al.,

2022b; Zhou et al., 2022).

3.5.3. Strengths and Weaknesses

In summary, self-explanatory models have several strengths. First, by definition, self-explanatory

models provide built-in explanations, so there is no need for post-hoc explanations. Second,

the form of explanation is flexible, e.g., model architecture, input features, natural language, or

causal graphs. Third, it is possible to supervise the explainer with human-provided explanations.
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This is helpful for learning more plausible explanations and encouraging the model to rely on desired

human-like reasoning mechanisms instead of spurious cues. Finally, certain self-explanatory models

(e.g., Tafjord et al., 2021; Hong et al., 2022; Chen et al., 2022b; Gao et al., 2022), are faithful by

construction (we should be extra cautious about this claim, though).

Self-explanatory models also present a few key weaknesses. First, many such models cannot guarantee

faithfulness, e.g., Neural Module Networks without intermediate supervision, predict-then-explain

models, rationale-based explain-then-predict models, and certain jointly-predict-and-explain models.

Second, the influence of explanations on task performance is mixed in self-explanatory models.

Many studies discover a trade-off between performance and interpretability (Narang et al., 2020;

Subramanian et al., 2020; Hase et al., 2020, i.a.), while others observe a positive impact on the

performance from including explanations (e.g., CoT-style prompting). The effect highly depends

on the task, the model family and size, the format of explanations, whether they are tuned, and

how they are used (as inputs, targets, or priors) (Hase and Bansal, 2022; Lampinen et al., 2022a).

Finally, large-scale human supervision on explanations can be costly and noisy (Dalvi et al., 2021).

Also, it is hard to automatically evaluate the quality of model-generated explanations given

reference human explanations, since there can be multiple ways to explain a prediction.

3.6. Case Study: CoT-style Explanations

It is claimed in the original CoT paper that LLM-generated explanations “provide an interpretable

window into their behavior” (Wei et al., 2022b), leaving the impression that CoTs make models

“self-explanatory”.

Using the properties outlined in Table 3.1, CoT-style explanations are produced at the same time as

the prediction (built-in) with white-box access to the model at the time of generation, providing local

(instance-level) explanations. Their unit of explanation is typically reasoning steps, and the form of

explanation could be natural language, structured programs, or a combination of both. Therefore,

CoT-style explanations can be considered as one instance of the last family, “self-explanations”, in

our taxonomy. More specifically, they belong to the “jointly-predict-and-explain” subtype, as there

are no separate explainer and predictor, but only one LLM that generates both the explanation and
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prediction.

By comparing CoT-style explanations with existing methods of this family, we are able to develop a

deeper understanding of why they lack faithfulness. Unlike previous studies in the jointly-predict-

and-explain subtype, which iteratively generate and verify each step to form structured proofs

(Tafjord et al., 2021; Dalvi et al., 2021; Hong et al., 2022), many CoT-style explanations generate

all steps at once, without any verification on their faithfulness. Compared to explain-and-predict

approaches, where the predictor can only access the explanation but not the input, CoT-style method

has no such information bottleneck. The model can always access both the input and the explanation,

which makes it technically possible for it to make the final prediction only based on the input,

ignoring the explanation.

These inherent limitations can lead to CoT explanations that, while seemingly plausible and detailed,

do not accurately reflect the model’s true reasoning process. Therefore, while CoT-style explanations

offer a step towards more interpretable AI, they also highlight the ongoing challenges in achieving

truly faithful explanations.

3.7. Summary

In this chapter, we have provided a comprehensive taxonomy of model explanation methods in NLP,

categorizing them into five primary families: similarity-based methods, analysis of model-internal

structures, backpropagation-based methods, counterfactual intervention, and self-explanatory models.

We have examined the strengths and weaknesses of each category, with a particular focus on

faithfulness.

Our case study on CoT-style explanations illustrated the potential and limitations of using LLMs to

generate explanations. While CoT-style explanations represent a significant advancement in eliciting

LLMs’ reasoning capabilities, they also reveal the challenges in ensuring these explanations are truly

faithful to the model’s internal reasoning processes.

Building on the insights gained from this taxonomy, in the next chapter, we will introduce and

evaluate a novel method aimed at enhancing the faithfulness of self-explanations generated by LLMs.
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CHAPTER 4

Faithful Explanations with Symbolic Reasoning

This chapter discusses our paper titled “Faithful Chain-of-Thought Reasoning” (Lyu et al., 2023b),

in which my collaborators Shreya Havaldar, Adam Stein, and I are co-first authors.12

As introduced in Section 2.3, Chain-of-Thought or CoT prompting (Wei et al., 2022b) is an in-context

learning technique, where an LM generates a reasoning chain in free-text along with the final answer,

given only a few exemplars. Compared to standard prompting (Brown et al., 2020a) where the LM

only generates the final answer, CoT prompting has brought striking performance gains on many

complex reasoning tasks, such as commonsense reasoning and math reasoning, where LMs have

previously struggled.

Q: John plans to sell all his 
toys and use the money to 
buy video games. He has 13 
lego sets and he sells them 
for $15 each. He ends up 
buying 8 videogames for $20 
each and has $5 left. How 
many lego sets does he still 
have?

A: He started with 13 lego sets. He sold 
them for $15 each. So he must have 
gotten 13 * $15 = $195 from selling 
them. He used this money to buy 8 
video games for $20 each. This means 
he spent 8 * $20 = $160 on the video 
games. He had $5 left, so in total he 
must have had $195 + $5 = $200. The 
answer is 0.

Input CoT output

Figure 4.1: An example of unfaithful output from CoT prompting on GSM8K. The answer (green)
does not follow from the reasoning chain (blue).

In addition to performance improvement, CoT is also claimed to “provide an interpretable window

into the behavior of the model” (Wei et al., 2022b). However, as pointed out in Section 2.3, it

lacks faithfulness. In the context of CoT, faithfulness means that the reasoning chain (explanation)

should accurately represent how the model arrives at the final answer (its reasoning mechanism). In

CoT-style prompting, the final answer does not necessarily follow from the previously generated

reasoning chain, since the final answer is still produced via auto-regressive generation. Thus, there is

no guarantee on faithfulness. Figure 4.1 exemplifies such an unfaithful generation from our inspection
12Concretely, I led the project, and worked on experiments on three domains as well as most of the analysis

experiments; meanwhile, Shreya and Adam together worked on experiments on two domains and the human evaluation.
In addition, we all contributed equally to the paper writing. I am using this work in my thesis with the permission of
my co-authors and advisors.
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Figure 4.2: An overview of our 2-stage pipeline, consisting of Translation, where an LM translates
a query (in NL/Natural Language) into a reasoning chain (which interleaves an NL decomposition of
the original query into multiple inter-dependent subproblems, and SL/Symbolic Language programs
to solve each subproblem); and Problem Solving, where an external solver executes the reasoning
chain to derive the answer, thus ensuring faithfulness.

of the model output from (Wei et al., 2022b) on GSM8K: the answer “0” is not even mentioned in

the reasoning chain. This illustrates that existing CoT methods do not provide true interpretability

of how the model predicts the answer.

To bridge this gap, we propose Faithful CoT, a faithful-by-construction framework integrating

symbolic reasoning with stochastic generation. Specifically, we break down a complex reasoning task

into two sequential stages: Translation and Problem Solving (Figure 4.2). During Translation,

an LM translates a Natural Language (NL) query into a reasoning chain, which interleaves NL and

a task-dependent Symbolic Language (SL), such as Python, Datalog, or Planning Domain Definition

Language (PDDL). The NL part decomposes the original query into a dependency graph of multiple

simpler subproblems, and the SL part solves each subproblem individually. Then, in the Problem

Solving stage, the reasoning chain is executed by a deterministic solver, e.g., a Python/Datalog

interpreter, or a PDDL planner, to derive the answer. This process guarantees that the reasoning

chain has to be a faithful explanation of how the answer is derived, since the answer is the result of

deterministically executing the chain.

We evaluate our approach on 10 reasoning datasets from 4 diverse domains: Math Word Problems
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(MWP), Planning, Multi-hop QA, and Relational Inference. We compare it with standard prompting

(Brown et al., 2020a) and CoT prompting, using the same underlying LM (Codex (Chen et al.,

2021)) and the same decoding strategies (greedy and self-consistent decoding (Wang et al., 2022b)).

Results show that on 8 out of the 10 datasets, our approach outperforms both baselines, with an

average accuracy gain over CoT of 4.4 on MWP, 1.9 on Planning, 4.0 on Multi-hop QA, and 18.1 on

Relational Inference, using greedy decoding. Together with self-consistent decoding, we achieve new

state-of-the-art few-shot performance at the time of publication on 7 out of the 10 datasets.

4.1. Method

Our method, Faithful CoT, is a 2-stage pipeline. Given a complex question Q, we prompt an LLM

to generate a reasoning chain C, which is then used to derive the final answer A. Like previous

CoT-style work, our prompt consists of (Q,C,A) triples. Notable differences lie in our unique

interleaving of NL (natural language) and SL (symbolic language) in C, as well as the way we derive

the final answer A.

In the Translation stage, given a complex query Q in NL, we prompt an LM to translate it into a

reasoning chain C, which interleaves NL and a task-specific SL (e.g., Python, Datalog, or PDDL).13

In the Problem Solving stage, we call a deterministic external solver, e.g., a Python interpreter,

a Datalog executor, or PDDL planner, depending on the task, to obtain the answer A from the

reasoning chain C. We define CNL to be the NL component and CSL to be the SL component in C.

Though we separate the two components notationally, they are interleaved in the generation. Using

this approach, C is guaranteed to be a faithful model explanation, since our final A is the result of

deterministically executing CSL. Moreover, CNL allows the user to better understand the reasoning

process.

We apply this method to 4 types of complex reasoning tasks: MWP, Multi-hop QA, Planning, and

Relational Inference. Next, we will illustrate how our method works for each of them with examples.
13Our prompts can be found in the Supplementary Materials.
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Task: Math Word Problems (MWP)

17

Query Reasoning Chain  
(NL + Python)

Answer

LM
Python  

Interpreter

   Reasoning         =         Translation                    +                  Problem solving 

METHOD

Figure 4.3: An example of how our method can be applied to Math Word Problems (input from the
GSM8K dataset). “Independent”/“Depends on X” represents the dependency relationship between
sub-problems. “Support” represents the rationale for how to solve each sub-problem.

4.1.1. Math Word Problems (MWP)

Given a grade-school math question Q written in NL (“If there are 3 cars in the parking lot and 2

more cars arrive, how many cars are in the parking lot?”, in Figure 4.3), we want to obtain A as a

real-valued number (5). In the Translation stage, we prompt the LM to take in Q and generate a

reasoning chain C, which interleaves CNL and CSL. Specifically, the CNL component consists of

three types of information:

(a) Subquestions: Q is broken down into multiple smaller-scale subquestions, e.g., “1. how many

cars are there in the beginning?”, “2. how many cars arrive?”, and “3. how many cars are in the

parking lot?”.

(b) Dependency Graph: As illustrated in Figure 4.2, each subquestion can either be answered

directly via context (subquestions 1 and 2 are “independent”) or rely on answers to previous

subquestions (subquestion 3 “depends on 1 and 2”).

(c) Rationales: Each subquestion is accompanied with rationale(s) to support the answer (the

“support” field). The rationales can be either a subset of the original context (“2 more cars arrive”)

or any external knowledge (“there are 7 days in a week”) relevant to the subquestion.
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Task: Multi-hop QA

18

Query
Reasoning Chain  

(NL + Datalog)
Answer

LM
Datalog 

Interpreter

   Reasoning         =         Translation                    +                  Problem solving 

METHOD

Figure 4.4: An example of how our method can be applied to Multi-hop QA (input from the
StrategyQA dataset).

Each subquestion and its corresponding dependencies and rationales inform the subsequent generation

of CSL. In our example in Figure 4.3, CSL consists of Python code generated to answer each

subquestion in CNL. During the Problem Solving stage, we execute CSL using our solver, a Python

interpreter, to derive A (5 cars in the end).

4.1.2. Multi-hop QA

Given a complex question Q that involves multiple steps of reasoning (e.g., “Would a pear sink

in water?” in Figure 4.4), we want to obtain the answer A as a Boolean value or string value

variable. Similar to our MWP task formulation, C interleaves CNL (NL comments), and CSL

(symbolic program). Depending on the nature of the task, the format of the reasoning chain C is

slightly different: for some datasets (e.g. StrategyQA), the LM first generates all subquestions and

their answers in NL, and then represents these answers as SL to derive A; for others (e.g. Date

Understanding and Sports Understanding), the LM interleaves the NL subquestions and the SL

program, similar to the case of MWP. In terms of SL, we use both Python and Datalog14, also

depending on the dataset. As Multi-hop QA problems involve multi-step reasoning to solve, CSL

14Datalog is a declarative logic programming language, often used as a query language for deductive databases.
According to https://en.wikipedia.org/wiki/Datalog, “A Datalog program consists of facts, which are statements that
are held to be true, and rules, which say how to deduce new facts from known facts.”
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Task: Planning

20

Query Reasoning Chain  
(NL + Planning Domain Definition Language (PDDL))

Answer

LM

PDDL  
planner

   Reasoning         =         Translation                    +                  Problem solving 

METHOD

Figure 4.5: An example of how our method can be applied to Planning (input from the SayCan
dataset).

often utilizes Boolean algebra and string comparisons (in Python) along with relation definitions

and logic programming (in Datalog). We use their corresponding interpreter as our deterministic

solver to execute CSL and obtain A.

In the example from Figure 4.4, the LM first generates the subquestions, “1. What is the density of a

pear?” and “2. What is the density of water?”, which are individually answered in NL. The answers

(“Water has a density of 1g/cm3”) are converted to Datalog statements (Has_density(“water”, 1)),

which are then combined to formalize the truth condition of the final answer. Finally, we execute

the Datalog program to determine that a pear would not sink in water.

4.1.3. Planning

In a user-robot interaction scenario, given a household task query Q from a user, we want to come

up with a plan of actions A that the robot should take in order to accomplish the task. For example,

in Figure 4.5, given user query “I spilled my coke on the table, could you throw it away and bring

something to clean with?”, a possible plan can be “find(coke), pick(coke), find(trash), put(coke)

...”. In the Translation stage, an LM translates Q into C, consisting of CNL (which breaks down Q

into subtasks) and CSL (which represents the subtasks as a symbolic goal in PDDL15 Figure 4.5
15PDDL is a language to define and solve classical planning problems. A goal is a special construct in PDDL.

According to https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language, “PDDL is a human-readable
format for problems in automated planning that gives a description of the possible states of the world, a description of
the set of possible actions, a specific initial state of the world, and a specific set of desired goals.”
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Task: Relational Inference

19

Query Reasoning Chain  
(NL +  Relation expression)

Answer

LM

   Reasoning         =         Translation                    +                  Problem solving 

Rule-based  
inference  
engine

METHOD

Figure 4.6: An example of how our method can be applied to Relational Reasoning (input from the
CLUTRR dataset).

shows this translation, with CSL in blue and CNL in black. Finally, we call a PDDL Planner as the

deterministic solver to obtain A, a plan to accomplish the goal CSL under the predefined scenario.

4.1.4. Relational Inference

Given a relational inference problem Q written in NL, we want to obtain A as a string-valued

variable. For example, the CLUTRR (Compositional Language Understanding and Text-based

Relational Reasoning) dataset (Sinha et al., 2019) involves inferring the family relationship (e.g.,

“grandson”) between two people from a short story (e.g., “[Gabrielle] drove her daughter [Dorothy]

to the hospital. [Dorothy]’s son [Vincent] showed up shortly after. How is [Vincent] related to

[Gabrielle]?”, shown in Figure 4.6). During the Translation stage, we prompt the LM to generate C,

consisting of CNL and CSL. Similar to previous tasks, CNL breaks down Q into subquestions (“How

is [Vincent] related to [Dorothy]” and “How is [Dorothy] related to [Gabrielle]”), as well as provide

input extracts as rationales to support the answer (“[Dorothy]’s son [Vincent] showed up shortly after”,

etc.). Each subquestion in CNL is answered in CSL via a custom relation expression representing the

relation between the mentioned entities, for example, relation(Vincent, Dorothy)=son denotes

that Vincent is Dorothy’s son. In the Problem Solving stage, our solver is a simple relation inference

function that relies on a set of transitivity rules provided by (Zhang et al., 2022a) among possible

family relationships, e.g., son@daughter=grandson (the son of one’s daughter is one’s grandson). Our

solver recursively applies these rules on CSL to derive A, and determine that Vincent is Gabrielle’s

52



Q: There are 15 trees in the grove. Grove 
workers will plant trees in the grove today. 
After they are done, there will be 21 trees. 
How many trees did the grove workers 
plant today?

A: We start with 15 trees. Later we have 
21 trees. The difference must be the 
number of trees they planted. So, they 
must have planted 21 - 15 = 6 trees. The 
answer is 6.

…… (7 more examples)

Q: Claire makes a 3 egg omelet every 
morning for breakfast.  How many dozens 
of eggs will she eat in 4 weeks?

A: Claire makes a 3 egg omelet every 
morning. In one week she will eat 3 * 7 = 
21 eggs. In 4 weeks she will eat 4 * 21 = 
84 eggs. The answer is 84.

Input

Model Output

Standard prompting Chain of Thought (COT) prompting
(Wei et al., 2022)

Faithful COT prompting 
(our method)

Q: There are 15 trees in the grove. Grove 
workers will plant trees in the grove today. 
After they are done, there will be 21 trees. 
How many trees did the grove workers 
plant today?

A: The answer is 6.

…… (7 more examples)

Q: Claire makes a 3 egg omelet every 
morning for breakfast.  How many dozens 
of eggs will she eat in 4 weeks?

A: The answer is 12.

Input

Model Output

# Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they 
are done, there will be 21 trees. How many trees did the grove workers plant today?

# To answer this question, we write a Python program to answer the following subquestions:
# 1. How many trees are there in the beginning? (independent, support: ["There are 15 trees"])
trees_begin = 15
# 2. How many trees are there in the end? (independent, support: ["there will be 21 trees"])
trees_end = 21
# 3. How many trees did the grove workers plant today? (depends on 1 and 2, support: [])
trees_today = trees_end - trees_begin
# 4. Final Answer: How many trees did the grove workers plant today? (depends on 3, support: [])
answer = trees_today

…… (7 more examples)

# Q: Claire makes a 3 egg omelet every morning for breakfast.  How many dozens of eggs will 
she eat in 4 weeks?
# To answer this question, write a Python program to answer the following subquestions:

# 1. How many eggs are in one dozen? (independent, support: ["External knowledge: there are 
12 eggs in a dozen"])
eggs_in_dozen = 12
# 2. How many eggs are in one omelet? (independent, support: ["Claire makes a 3 egg omelet 
every morning"])
eggs_in_omelet = 3
# 3. How many omelets does Claire make in one week? (independent, support: ["External 
knowledge: there are 7 days in a week"])
omelets_per_week = 7
# 4. How many eggs does Claire eat in one week? (depends on 2 and 3, support: [])
eggs_per_week = eggs_in_omelet * omelets_per_week
# 5. How many eggs does Claire eat in 4 weeks? (depends on 4, support: ["How many dozens of 
eggs will she eat in 4 weeks?"])
eggs_4_weeks = eggs_per_week * 4
# 6. How many dozens of eggs does Claire eat in 4 weeks? (depends on 5 and 1, support: [])
dozens_4_weeks = eggs_4_weeks / eggs_in_dozen
# 7. Final Answer: How many dozens of eggs will she eat in 4 weeks? (depends on 6, support: [])
answer = dozens_4_weeks

Input

Model Output

Figure 4.7: The prompt for GSM8K (a Math Word Problems dataset) from standard, CoT, and
Faithful CoT prompting (ours). The ground-truth answer is 7, and only our method correctly
computes the answer.

grandson.

4.2. Experimental setup

4.2.1. Datasets

Here, we summarize the evaluation datasets used for each domain. We select the same number (6 to

10, depending on the task) of exemplars as in (Wei et al., 2022b) to form our few-shot prompt.16

Unless otherwise stated, we use the official splits: training set for exemplar selection, validation set

for prompt tuning, and test set for evaluation.17

Math Word Problems (MWP): We follow (Wei et al., 2022b) and consider the same five

MWP benchmarks: GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021), MultiArith
16Prompt exemplars can be found in Appendix A.4.
17Dataset Details can be found in Appendix A.2.
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(Roy and Roth, 2015), ASDiv (Miao et al., 2020), and AQuA (Ling et al., 2017). For all datasets,

the input question is phrased in NL. The answer is a string-valued mathematical expression for

AQuA, and one or more integer(s) for all other datasets. We use the same 8-shot prompt for all

datasets except AQuA.

Multi-hop QA: We consider the three datasets: StrategyQA (Geva et al., 2021), a dataset of

open-domain questions that require an implicit multi-step strategy to answer, e.g., “Did Aristotle use

a laptop?” involves answering “1. When did Aristotle live?”, “2. When was the laptop invented?”, and

“3. Is #2 before #1?”; Date Understanding from BIG-bench (BIG-Bench collaboration, 2021),

which asks the model to infer a date from a context, by performing computation on relative periods

of time; and finally, Sports Understanding from BIG-bench, which asks the model to decide

whether an artificially constructed statement related to sports is plausible or implausible. Since the

latter two datasets do not have a training set, we follow (Wei et al., 2022b) and select 10 examples

from the test set to form the prompt and use the rest for evaluation.

Planning: We use the SayCan dataset (Ahn et al., 2022), which assumes a scenario of a robot

operating in a kitchen, helping the user with household tasks, e.g., “bring a coke to the table”. There

are a number of locations and objects that the robot can interact with. The robot can only perform

a fixed set of actions, including find, pick, and put. The task is to map a user query in NL to a

plan of predefined actions. Following (Wei et al., 2022b), we manually write 7 exemplars, since no

training set is provided.

Relational inference: We use the CLUTRR (Sinha et al., 2019) benchmark described above.

The dataset has multiple splits based on the number of intermediate steps K required to reach the

answer. We construct the prompt using 8 exemplars with K ∈ {2, 3}, and test the models on the

remaining examples with K up to 10.

4.2.2. Evaluation Metrics

We evaluate the model performance with the accuracy of the final answer. Following previous work

(Wei et al., 2022b; Wang et al., 2022b; Chen et al., 2022b), for all MWP datasets (except AQuA)
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where the answer contains integer(s), a correct answer is defined as the exact match between the

prediction and the ground truth both rounded up to the nearest integer (with the math.ceil()

function in Python); for StrategyQA and Sports Understanding where the answer is a Boolean value,

it is defined as the exact match between the prediction and the ground truth both evaluated as a

Boolean variable; for SayCan, the generated plan is considered correct if it is among the ground

truth plans; for all other datasets, we rely on the exact match between the prediction string and the

ground truth string.

4.2.3. Language Model

In our main experiments, we use OpenAI Codex (Chen et al., 2021) (code-davinci-002, with 175B

parameters) as the underlying LM during Translation.

4.2.4. Baselines

We compare our method to two other baselines, shown in Figure 4.7: standard few-shot prompting,

popularized by (Brown et al., 2020a), with demonstrations of only the question and the answer

(green); CoT prompting (Wei et al., 2022b), which additionally provides a reasoning chain in NL

(blue); and Least-to-Most prompting, which also prompts the model to decompose the original

question into a set of subquestions and solves them sequentially, but does not involve dependency

relation or symbolic structure. We also show the published SOTA few-shot results at the time of

publication of this work.

All prompting methods are compared under two decoding strategies: greedy decoding, where the

LM samples the most probable next token from the vocabulary (i.e., temperature = 0.0); and

self-consistency decoding (Wang et al., 2022b), where the LM generates multiple reasoning chains

and chooses the final chain based on majority voting on the evaluated answer (we use a temperature

of 0.4 and 40 generations for all datasets).18 We compare greedy and self-consistency sampling

as they are two widely used decoding strategies for LMs, and self-consistency has been shown

to consistently improve LMs’ performance on multiple reasoning tasks (Wang et al., 2022b). We
18Note that we do not report the performance of standard prompting with self-consistency decoding, since when the

number of sampled outputs is large enough, this converges to standard prompting with greedy decoding (Wang et al.,
2022b).
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Math Word Problems Planning Multi-hop QA Relation
Method GSM8K SVAMP MultiArith ASDiv AQuA SayCan StrategyQA Date Sport CLUTRR

Greedy Decoding
Standard 19.6 69.5 43.8 72.1 31.5 82.5 63.9 51.3 71.9 42.0

CoT 63.3 77.3 96.5 80.0 42.1 86.4 72.5 59.9 98.6 48.5
Least-to-Most 38.3 80.3 74.0 76.5 40.6 77.7 72.2 76.6 99.5 47.2

Faithful CoT (ours) 72.3 83.4 98.8 80.2 47.2 89.3 63.0 81.6 99.1 58.9
Self-Consistency Decoding

CoT 78.0 86.8 100.0 84.2 52.0 89.3 79.8 63.8 98.0 45.7
Least-to-Most 38.8 80.5 74.0 76.3 44.9 76.7 71.9 77.2 99.4 50.9

Faithful CoT (ours) 80.0 88.8 99.2 84.4 61.4 94.2 65.2 85.5 99.0 71.9

Table 4.1: Accuracy of different methods on 10 reasoning datasets from 4 domains. We compare
our method, Faithful CoT, with standard Brown et al. (2020a), CoT Wei et al. (2022b), and Least-
to-Most prompting Zhou et al. (2022), with code-davinci-002 as the LM. The best results within
each decoding strategy are bolded.

reproduce the baseline results ourselves in cases when they are not reported or when we clean the

test set.

4.3. Results

Our results on all datasets are shown in Table 4.1. We see that Faithful CoT outperforms CoT

across most datasets and domains for both greedy and self-consistency decoding.

With greedy decoding, our method outperforms CoT on 9 of the 10 benchmark datasets spanning

the 4 domains. On average, it improves over CoT in the MWP domain by 4.4, in Planning by 1.9, in

Multi-hop QA by 4.0, and in Relational Inference by a surprising 18.1.

Our method also outperforms CoT under self-consistency decoding on 8 out of the 10 datasets.

Compared to greedy decoding, the average accuracy gain becomes larger for Planning (1.9 → 3.9)

and Relational Inference (18.1 → 26.2), but smaller for MWP (4.4 → 2.5) and Multi-hop QA (4.0 →

2.7). Also, it is worth noting that our method achieves the new few-shot SOTA results on 7 datasets

at the time of publication.

4.4. Analysis

In this section, we analyze the role of different components in our pipeline, to better understand

where its capabilities come from and where it still struggles. Unless otherwise stated, we choose one

dataset from each domain for analysis – GSM8K, Date Understanding, SayCan, and CLUTRR –
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Figure 4.8: Ablation study results: accuracy when we remove different components of our Faithful
CoT pipeline. See Section 4.4.1 for details.

using greedy decoding.

4.4.1. Ablation Study

Given the strong performance of Faithful CoT, we now address a natural question: how much does

each part of the prompt contribute to the accuracy? We perform an ablation study where

we remove different parts of the prompt and see how the performance changes. In addition to the

original prompt (“Full”), we test four variations, illustrated with the example from Figure 4.7:

No rationale: We remove the rationales, i.e., everything in the brackets from the NL comments,

e.g., “independent, support: [‘There are 15 trees’]”.

No NL but nudge: We remove all NL comments except the “nudge” line: e.g., “# To answer this

question, we write a Python program to answer the following subquestions”.

No NL: We remove all NL comments.

No solver: Instead of calling the external solver, we add “Answer: {answer}” to the end of every

exemplar and let the LM predict the answer itself.

Figure 4.8 shows the results of all prompt variations. On GSM8K, Date Understanding, and SayCan,

NL comments contribute little to the performance, and sometimes even slightly hurt it. On CLUTRR,

however, their role is crucial, since the exclusion of each component (rationale, nudge, subquestions)
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Exemplars GSM8K Date SayCan CLUTRR
Set 0 (Table 4.1) 71.6 80.8 89.3 58.9

Set 1 72.3 81.3 90.3 59.0
Set 2 70.8 85.0 85.4 57.2
Set 3 71.6 82.5 88.3 58.0
Set 4 70.6 77.4 88.3 55.5
Set 5 68.5 85.0 89.3 56.0
Mean 70.9 82.0 88.5 57.4
Std. 1.3 2.9 1.7 1.5

Table 4.2: Robustness to the choice of exemplars across 6 runs.

results in a clear accuracy drop. In particular, comparing No NL but nudge and No NL, the

nudge line itself brings a striking improvement by 31.3 points.

The external solver relieves the burden of problem solving from the LM. Without it, the accuracy

suffers a huge decline on GSM8K, Date Understanding, and CLUTRR (-50.8, -22.9, and -19.4

respectively), while on SayCan it improves by 2.9 nonetheless. One potential influencing factor is

that SayCan might be too homogeneous, as it contains a set of only 3 predefined actions. This can

make the task relatively easy, which allows all model variants to achieve around 90% accuracy and

renders the solver unnecessary. Another potential reason is the level of correspondence between the

final answer and the reasoning chain for different datasets: as shown in Figure 4.5, the answer in

SayCan is a sequence of actions (e.g., find(redbull)), each directly corresponding to one step in the

reasoning chain (e.g., at redbull trash). However, the answer in the other three datasets is only a

single number or string, which can only be derived after executing all the steps in the reasoning

chain. Therefore, the latter type of tasks further necessitates the presence of an external solver.

4.4.2. Robustness to Exemplars

We now answer the question: how much does the choice of exemplars matter? To do this,

we annotate 20 examples in total, randomly sample k (7-10, depending on the dataset) from our

annotated examples to construct the prompt, and repeat the process five times. Table 4.2 shows

the performance of all six runs, including the original (from Table 4.1). The mean accuracy is close

to the original (-1.5 to +1.2), still above the baselines by a large margin (7 to 17) on all datasets

except the arguably easiest SayCan, considering the standard deviation (1.3 to 2.9). This strongly

suggests that the benefits of Faithful CoT are minimally influenced by the choice of exemplars.
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4.4.3. Robustness to Prompt Phrasing

Prompt GSM8K Date SayCan CLUTRR
Original 72.3 81.6 89.3 58.9
Variation 1 69.1 84.4 88.3 -
Variation 2 70.3 81.6 90.3 56.2
Variation 3 70.2 80.5 87.4 55.9
Mean 70.5 82.0 88.8 57.0
Std 1.3 1.7 1.3 1.7

Table 4.3: Robustness to prompt phrasing.

We study the sensitivity of our method to subtle differences in the prompt design. We experiment with

three prompt variations: 1. randomly permuting the order of independent subquestions/reasoning

steps; 2: Changing the variable names; 3. changing the nudge line (e.g. from “# To answer this

question, write a Python program to answer the following subquestions” to “# To solve this question,

we answer each of the following subquestions with a Python program”).

We rerun the evaluation of all three variations under greedy decoding. Table 4.3 shows the results.

Overall, the performance is quite stable, always above each baseline on all four datasets.

4.4.4. Model Sensitivity

Now, we want to answer the question: how much does the choice of LM matter? We examine

the effect of using four alternative code-generation models as the Translator: code-davinci-001,

text-davinci-002, text-davinci-003, gpt-4. We compare our method with the three baselines

using each of the above LM on five MWP datasets, using the greedy decoding strategy.

As shown in Table 4.4, regardless of the underlying LM, Faithful CoT consistently outperforms all

baselines on the vast majority of the datasets, and performs very closely with the best method (<2.0

difference) on the remaining ones. On average, it has a relative accuracy gain of 16.1%, 11.0%, 9.4%,

and 4.6 % over the best-performing method among the baselines, for each LM respectively. This

indicates that even though the absolute performance varies depending on the LM, Faithful CoT

brings a relatively consistent accuracy gain.

Notably, with GPT-4 as the underlying LM, Faithful CoT results in 95.0+ accuracy in 4 of the 5

MWP datasets, far outperforming the previous few-shot SOTA on three of them (GSM8K, SVAMP,
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and ASDiv).

Method / Dataset GSM8K SVAMP MultiArith ASDiv AQuA Average
LM: code-davinci-001

Standard 5.2 28.7 8.6 38.5 22.8 20.8
CoT 14.7 41.2 57.2 50.4 22.4 37.2
LtM 9.8 44.9 18.5 46.6 20.5 28.1

Faithful CoT (ours) 27.4 50.8 63.3 53.7 20.9 43.2
LM: text-davinci-002

Standard 15.4 65.2 34.1 64.8 24.0 40.7
CoT 47.2 68.0 91.1 69.9 40.6 63.4
LtM 32.9 73.8 68.3 70.9 34.6 56.1

Faithful CoT (ours) 62.7 80.0 92.8 75.4 41.3 70.4
LM: text-davinci-003

Standard 16.9 69.4 38.8 59.1 29.5 42.7
CoT 59.6 79.5 95.0 69.1 46.9 70.0
LtM 34.6 79.5 73.7 70.0 44.5 60.5

Faithful CoT (ours) 71.7 85.1 94.5 80.7 50.8 76.6
LM: gpt-4

Standard 46.9 88.4 98.7 70.2 50.4 70.9
CoT 64.9 80.0 94.0 71.6 75.2 77.1
LtM 91.8 92.9 98.3 86.7 72.0 87.5

Faithful CoT (ours) 95.0 95.4 98.5 95.6 73.6 91.6

Table 4.4: Accuracy of different prompting methods with each underlying LM on 5 MWP reasoning
datasets.

4.4.5. Error Analysis

To further investigate where our method still fails, we inspect 100 errors19 from model predictions

on each of the four datasets and manually annotate the error categories. We only present the results

on GSM8K here, and leave the error analyses on other datasets in Appendix A.3.1.

As shown in Figure 4.9, we categorize the errors on GSM8K into 6 types, inversely sorted with

frequency:

Wrong Subquestion (49%): The LM produces a wrong NL subquestion, which eventually leads to

the incorrect answer. While this is the majority error type in our sample, it is worth noting that in a

typical human-in-the-loop collaboration, these errors are easily fixable. Even if the user is unfamiliar

with programming, they can inspect the NL subquestions and potentially correct the model error by

simply deleting or editing a wrong subquestion.
19To encourage sample diversity, we embed all the errors using text-davinci-002 and cluster the embeddings using

spectral clustering. This produces around 70 clusters of different sizes, from which we gather 100 samples using
importance sampling.
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Figure 4.9: Error analysis for GSM8K. For a detailed description of the error categories, see
Section 4.4.

Wrong Code (24%): The NL subquestion is correct, but the code fails to answer the subquestion

correctly. For example, the code uses a variable that has not been previously defined. Note that this

type of error can be reduced as LMs improve their code generation ability, for example, by continued

finetuning on the relevant SL.

Semantic Understanding Error (12%): The LM incorrectly interprets certain semantic subtleties

in the query. This is the most complex and most interesting error category. For example, consider

the following problem:

If Martin eats Cheerios every day for breakfast, he’ll lose 1.25 pounds/week. If he eats

donuts every day for breakfast, he’ll gain 1.75 pounds/week. What will be the difference

in his weight at the end of 5 weeks between the two breakfast options?

As shown in Table 4.5, the generated code does not assign opposite polarities (signs) for “pounds

lost” vs. “pounds gained”. For other examples in this category, we notice errors like missing that a

pair of something has 2 items in it, missing to subtract 2 for “two years ago” when it occurs as a

subjunctive, and so on. Fixing these errors, in general, will require more than providing additional

examples in the prompt.

Generation Cutoff (7%): The generation stops midway, mainly due to the LM producing the

same steps over and over again. These errors could be easily detected in postprocessing and possibly

fixed by re-prompting the LM.
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# 1. How many pounds will Martin lose per week if he eats Cheerios every day for breakfast? (independent,
support: ["he’ll lose 1.25 pounds/week"])
pounds_lost_cheerios = 1.25
# 2. How many pounds will Martin gain per week if he eats donuts every day for breakfast? (independent,
support: ["he’ll gain 1.75 pounds/week"]) pounds_gained_donuts = 1.75
# 3. How many weeks are there in 5 weeks? (independent, support: ["External knowledge: there are 7 days
in a week"])
weeks_in_5_weeks = 5
# 4. How many pounds will Martin lose in 5 weeks if he eats Cheerios every day for breakfast? (depends on
1 and 3, support: [])
pounds_lost_cheerios_5_weeks = pounds_lost_cheerios * weeks_in_5_weeks
# 5. How many pounds will Martin gain in 5 weeks if he eats donuts every day for breakfast? (depends on 2
and 3, support: [])
pounds_gained_donuts_5_weeks = pounds_gained_donuts * weeks_in_5_weeks
# 6. What will be the difference in his weight at the end of 5 weeks between the two breakfast options?
(depends on 4 and 5, support: [])
difference_5_weeks = pounds_gained_donuts_5_weeks - pounds_lost_cheerios_5_weeks
# 7. Final Answer: What will be the difference in his weight at the end of 5 weeks between the two breakfast
options? (depends on 6, support: [])
answer = difference_5_weeks

Table 4.5: Generated code for the MWP problem in Section 4.4 – Error Analysis.

Wrong Gold Label (5%): We find 5 (out of our 100) examples that are genuine annotation errors

in the gold labels.

Missing Subquestion (3%): The LM misses a relevant subquestion needed for the rest of the

reasoning chain to work. These errors are also potentially fixable via human-in-the-loop interaction,

where the user can insert a subquestion into the reasoning chain.

4.5. Conclusion

In this chapter, we focused on the faithfulness of CoT-style “self-explanations” – to what extent

they accurately capture the reasoning mechanism used by LLMs in predicting the answer. Due to

their free-text form, reasoning chains generated by conventional CoT prompting are not necessarily

faithful explanations. To address this gap, we introduce the Faithful CoT framework, an innovative

approach that integrates stochastic translation with deterministic problem-solving. This method

does not merely provide more faithful explanations, but also empirically enhances the performance

of the end task. Through a detailed analysis, we show that the external solver is essential to both

explanation faithfulness and task accuracy.

Our findings shed light on the interplay between interpretability and performance. A number
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of previous studies in self-explanatory models have shown an interpretability-performance trade-

off (Camburu et al., 2018b; Kumar and Talukdar, 2020, i.a.), however, by incorporating symbolic

reasoning into end-to-end NLP workflows, we demonstrate that there can exist a synergy between

them. This suggests a potentially promising pathway to enhance interpretability without sacrificing

performance in self-explanatory models.

One important limitation of our work lies in the range of tasks. Currently, we have only focused

on tasks that can be formulated as a symbolic language. For tasks that intuitively cannot be

solved with symbolic reasoning, such as commonsense QA, Natural Language Inference (NLI), and

poem writing, will it be possible to adapt our framework to them? Another limitation concerns

the scope of faithfulness. We now only guarantee that the problem solving stage is faithful, but

the translation stage is still opaque, meaning it is not self-interpretable how the LM generates

the reasoning chain from the question. It is still an under-explored question whether it is possible

to improve the interpretability of the LM generation process in general, and a few recent studies

have made promising early progress (Yin and Neubig, 2022; Sarti et al., 2023) that can be useful in

improving the faithfulness of the Translation stage.

Even as we address the issue of faithfulness, a crucial question remains: does faithfulness translate into

practical utility? For instance, can faithful explanations make models more trustworthy and robust in

real-world applications? This question is central to the next phase of our exploration. In the following

chapters, we will investigate whether these explanations can be leveraged to enhance the practical

utility of LMs. Specifically, we will explore how explanations can improve model trustworthiness

and robustness, examining scenarios such as calibrating prediction confidence, correcting prediction

errors, and mitigating reliance on spurious cues.
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CHAPTER 5

Using Explanations for Confidence Calibration

This chapter discusses our paper titled “Calibrating Large Language Models with Sample Consistency”

(Lyu et al., 2024), in which my collaborators Kumar Shridhar and I are co-first authors.20

In this chapter, we will study whether explanations can be used to make LMs better calibrated,

meaning that the confidence level is aligned with the likelihood of the prediction being correct

(Brier, 1950). A well-calibrated system can enable model developers to provide selective predictions,

help users decide when to trust or distrust model responses, and potentially facilitate performance

improvement through human intervention or self-refinement (Madaan et al., 2023; Shridhar et al.,

2023).

Figure 3: Model calibration of different parameter scales.

chance that the whole entity can also be recovered.
In facts generation task, we use an enitity linking
dataset T-REx (Elsahar et al., 2018), which includes
entity-labeled texts extracted from Wikipedia pages.
For T-REx and the PILE dataset, we randomly draw
100k samples as our evaluation set.

Multi-task Language Understanding is a task
where models are given questions across different
fields with multiple answer options, which is de-
signed for testing the understanding and reasoning
ability of a language model. We mainly focus on
questions with a single correct answer. Follow-
ing MMLU benchmark (Hendrycks et al., 2021),
we concatenate 5 in-context samples ahead of the
questions and designed prompts to constrain mod-
els to respond with answer options (i.e. ’ABCD’).
We choose MMLU benchmark (Hendrycks et al.,
2021) as our evaluation data, which covers single-
choice questions in 57 subjects across STEM, the
humanities, the social sciences and so on.

5 Calibration in Pre-training Stage

In this section, we study the effect of parameter
scales and training dynamics in pre-training stage
to models’ calibration.

5.1 Experimental Setups
We choose Pythia as our base model (Biderman
et al., 2023). Pythia is a suite of transformer-based,
auto-regressive language models designed for sci-
entific research. It contains 8 models whose scales
range from 70m to 12B parameters and for each

of the scale it provides 154 checkpoints including
143 checkpoints saved every 1,000 training steps
(i.e. 1 epoch) and 11 checkpoints trained for less
than 1,000 steps. All of these models are trained
on exactly the same data—the PILE (Gao et al.,
2020) dataset in the same order. For parameter
scale study, we experiment on models with all 8
scales. As for training dynamics, we choose Pythia-
1B4 considering time and computational cost, and
use 2n⇤1, 000(n = 1, 2...) steps checkpoints (up to
step143,000) for our study. We also include check-
points of step256 and step512 in our experiments
to observe the behavior of under-fitted models.

5.2 Parameter Scales
Figure 3 shows the experimental results of parame-
ter scales on three tasks. Generally, larger models
produce better calibrated results while the level
of such effect is diverse among tasks. We find
that models with all parameter scales can produce
well-calibrated predictions on CLM task, with ECE
lower than 0.1. Also, parameter scales only mildly
affect model calibration on the CLM task, where
difference is minor between smallest and largest
model. This might because CLM task is the same
as the pre-training objective, where large scale and
diverse corpus makes it hard for models to be over-
confident when generating common texts. On facts
generation task, model performance on both cali-
bration and accuracy shows a stronger positive cor-
relation with parameter scales. Results on MMLU
(Figure 3-e and 3-f) seems very messy, but we can
still observe some meaningful patterns here. All

Figure 5.1: Calibration curves of LLMs of different sizes on MMLU, a widely-used benchmark for
LM’s reasoning abilities, where the x-axis is the probability of the prediction and the y-axis is the
accuracy (figure from Zhu et al. (2023)). Different colors of lines represent LLMs of different sizes, as
shown on the parameter scale. The dotted line represents “perfect calibration”, where the accuracy
is exactly aligned with confidence.

Unfortunately, LLMs are not well-calibrated off-the-shelf — as shown in Figure 5.1, the probability

scores of model predictions are often poorly aligned with actual performance (Jiang et al., 2021;
20We came up with the core idea together in a meeting. Then, I led the project, and worked on experiments

for closed-source LLMs; meanwhile, Shridhar worked on experiments for open-source LLMs. In addition, we both
contributed equally to paper writing. I am using this work in my thesis with the permission of my co-authors and
advisors.
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Figure 5.2: We study three consistency measures in this work: agreement-based, entropy-based,
and first-second-distance-based (FSD). Does a more “consistent” distribution (left) indicate a higher
confidence in correctly answering the question than a less “consistent” distribution (right)?

Chen et al., 2023b). While traditional calibration methods (Guo et al., 2017; Lakshminarayanan et al.,

2017; Gal and Ghahramani, 2016, i.a.) can in theory be used to better calibrate open-source LMs,

for recent LLMs, these methods sometimes become formidably costly because of the need to retrain

multiple copies of the model, and might even be inapplicable due to inaccessible training data, model

weights, and output probabilities in closed-source LLMs.

In this work, we investigate the research question: Can explanations help make models better

calibrated? One potential way is through sampling multiple explanations given a single query

(Wang et al., 2022b) and measuring the consistency21 of the distribution. Intuitively, “spiked”

distributions (Figure 5.2, left) could indicate that the model is confident in correctly answering the

question, whereas close to uniform distributions (Figure 5.2, right) might be correlated with lower

confidence. If these intuitions hold, this approach would have the advantage of being fully post-hoc

and requiring no additional calibration data, readily applicable to black-box LLMs.

Existing work along this line has only used the agreement between the original generation and
21The term “Consistency” has been used to refer to multiple concepts in NLP, including factual alignment (Tam et al.,

2022), logical soundness (Nye et al., 2021b), agreement within diverse outputs (Wang et al., 2022b), among others.
We use the term “consistency” to refer to the uniformity in the distribution of multiple model generations, as measured
by three metrics in Figure 5.2.
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multiple randomly sampled generations as a metric for consistency, ignoring the rich information

from the distribution of generations (Wang et al., 2022b; Xiong et al., 2023, i.a.). Assume we have a

naive baseline that randomly guesses among four options in a multiple-choice question. As shown

in Figure 5.2 (right), agreement would give a confidence estimate of 25% based on only one most

popular answer, while the other two metrics both give 0% confidence based on the distribution.

Intuitively, the latter estimate might align better with the fact that “the model is equally confused

about all four answers”, and the former might lead to overconfidence.

As shown in Figure 5.2, we consider three ways to measure consistency, focusing on different

characteristics of the distribution: agreement-based, as mentioned before; entropy-based, which

is based on the normalized entropy of the generation distribution; and first-second-distance-

based (FSD), which measures the percentage difference in samples agreeing with the majority and

second-majority answers.

We experiment on both open-source (LLAMA, Mistral) and closed-source LLMs (Codex, GPT-3.5-

turbo, GPT-4), and on nine datasets of four diverse reasoning tasks (Math Reasoning, Multi-Hop

QA, Planning, Relational Reasoning). Our experiments reveal several interesting findings: (i) When

prompted to generate explanations before the answer, LMs exhibit markedly improved calibration.

(ii) On average, all three consistency metrics significantly outperform existing post-hoc calibration

baselines such as probabilistic and verbalized confidence extraction methods. (iii) Scaling model size

appears to enhance calibration, whereas instruction-tuning shows a negative effect. (iv) Increasing

the number of generation samples leads to more accurate calibration, with notable improvements

observed even with as few as 3-5 samples.

5.1. Confidence Calibration

Traditional calibration methods, such as probabilistic (Guo et al., 2017), density-based (Lee et al.,

2018; Yoo et al., 2022), and ensemble-based (Gal and Ghahramani, 2016; Lakshminarayanan et al.,

2017) approaches, have proved effective in better calibrating the confidence in white-box LMs. These

methods require access to the model logits and/or their pretraining data, involve retraining multiple

copies of the same model, or necessitate another dedicated calibration dataset. With the advent
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of LLMs, they become overly expensive and sometimes even inapplicable to closed-source LLMs.

To this end, several post-hoc approaches have been developed. Kadavath et al. (2022) prompt the

model to estimate the probability of its generated response being “True”, while Lin et al. (2022) and

Mielke et al. (2022) investigate whether the model can directly verbalize its confidence (e.g., “highly

confident”, or “80% confident”). Another line of work focuses on calibrating confidence with sample

consistency (Wang et al., 2022b; Manakul et al., 2023; Xiong et al., 2023; Portillo Wightman et al.,

2023, i.a.), which only needs input and output access to the model. However, existing studies have

only focused on agreement-based measures of consistency, resulting in potential overconfidence. This

necessitates a systematic study on how to best elicit confidence from consistency.

5.2. Method

Consistency over multiple generations can be used as an indicator for understanding the confidence

associated with model predictions. It has been studied in the past for logit-based uncertainty

estimation such as model ensembling (Lakshminarayanan et al., 2017) and we extend it to multiple

generations in LLMs. For a given input x, we generate a set of n candidate outputs ŝ1, . . . ŝn. From

each sample ŝi, we parse the final answer âi using regex matching. We do a majority voting over the

entire answer (multi-)set a = {â1 . . . ân} to get the most-voted answer ā = argmaxa
∑n

i=1 1(âi = a),

where a takes on values from the set of unique answers ā.

We formalize three ways to measure consistency: agreement-based, entropy-based, and first-second-

distance-based (FSD). From each measure, we aim to obtain a confidence score conf(x, ā) for each

input x to calibrate the correctness of the prediction.

Agreement-based. Following previous work (Wang et al., 2022b; Xiong et al., 2023), we compute

the agreement-based consistency by calculating the percentage of answers in a that agree with the

most-voted answer ā. In other words, agreement-based consistency, Agree(ā) is defined as:

Agree(ā) =
1

n

n∑
i=1

1(âi = ā) (5.1)
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Entropy-based. In classification tasks, the entropy of output class probabilities has been used

to estimate prediction uncertainty (Gal, 2016). We extend this idea to the distribution of multiple

model generations to understand the uncertainty in solving an open-ended reasoning problem, where

a lower entropy indicates a more consistent distribution.

To calculate entropy-based consistency, we first obtain a set of answers without duplicates ā. Then,

we define entropy-based consistency, Ent(a) as:

Ent(a) = 1− (− 1

log(|ā|)

|ā|∑
i=1

pi log(pi)) (5.2)

where, the cardinality of the unique answer set |ā| denotes the number of unique answers in the set

a and the probability pi is the normalized frequency of each unique answer āi in the multi-set a.

Note that the normalized entropy on the right side of the equation is subtracted from 1 to reverse

the range between [0, 1] as the lower the entropy, the more consistent the samples are, and thereby

the higher the elicited confidence is.

FSD-based. Since the entropy-based measure considers all unique answers that might be skewed

toward the tail of the frequency distribution, and agreement-based consistency relies on the most-

voted answer, we propose a third alternative, FSD. To compute FSD-based consistency, we consider

the top two most-voted answers (ā and ¯̄a) and calculate the corresponding agreements Agree(ā)

and Agree(¯̄a). Then, we use the difference between the two to compute the FSD-based consistency,

FSD(a):

FSD(a) = Agree(ā)− Agree(¯̄a) (5.3)

This metric is particularly useful for cases when the model is unsure about the most-voted answer

and places high confidence in the top two predictions. In such cases, an FSD-based consistency

measure can avoid overconfidence based on the most-voted answer alone.
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5.3. Experimental Setup

5.3.1. Baselines

We compare consistency-based calibration with four post-hoc methods. Given an input x and the

most-voted answer ā, we want to get an estimated confidence score conf(x, ā) of the answer being

correct from each calibration method.

• Raw logits (logit) directly considers the probability of the generation as the confidence. We

measure the confidence as the exponential of the average log probability of all tokens in a sample

reasoning chain ŝā that results in the answer ā. This is equivalent to the reciprocal of the perplexity

of the reasoning chain, or 1
PPL(ŝā)

.

• P(True) (Kadavath et al., 2022) prompts the model to judge the truthfulness of its generation

and considers the normalized probability assigned to the ‘True’ token as its confidence. In our

implementation, we prompt the model to examine the correctness of its generated answer ā and

reasoning chain ŝā with the following prompt:

Q: {QUERY}

A: {REASONING_CHAIN}

Answer : {ANSWER}

I s the above answer c o r r e c t ? (Yes/No ) :

We then take the normalized probability of the token “Yes” as the confidence, or P (Yes)
P (Yes)+P (No) ,

where P () is the probability assigned to a token by the LM, considering both its uppercase and

lowercase variants.

We do not use the original prompt from Kadavath et al. (2022) that uses “True/False” instead of

“Yes/No”, because we find that the model sometimes have difficulty outputting the token in the

required format in a 0-shot setting.

We implement P(True) under both 0-shot and 8-shot prompting in our experiments. In the 0-shot

setting (ptrue0-shot), we directly prompt the model with the above prompt. In the 8-shot setting
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(ptrue8-shot), we additionally show 8 exemplars in the same format randomly sampled from the

development set, with 4 correct (“Yes”) and 4 incorrect (“No”) predictions in random order.

• Verbalized Confidence Similar to P(True), we prompt the model to examine its generated

answer ā and reasoning chain ŝā. We now ask it to directly verbalize its confidence either as a

percentage (verbpercent):

Q: {QUERY}

A: {REASONING_CHAIN}

Answer : {ANSWER}

How con f i d en t are you in the above answer

(0−100%)?:

or as a linguistic expression (verbling):

Q: {QUERY}

A: {REASONING_CHAIN}

Answer : {ANSWER}

How con f i d en t are you in the above answer ?

( choose from "Almost no chance " , "Highly

un l i k e l y " , " Un l ike ly " , "Probably not " ,

"About even " , " Better than even " ,

" L ike ly " , "Probably " , "Highly l i k e l y " ,

"Almost c e r t a i n " ) :

where the linguistic expressions above are deterministically mapped to a percentage from 5% to 95%

with a step size of 5%, in the listed order.

Finally, we take the predicted percentage or the linguistic expression mapped to a percentage as the

verbalized confidence level. For both verbpercent and verbling, we use 0-shot prompting, since it is

technically impossible to know the true “confidence” of a single prediction. Also, our experimental

setup assumes a post-hoc setting, where no additional data is available for tuning a mapping from

linguistic expressions to percentages.

We compare consistency-based calibration with only verbalized methods for GPT-3.5-turbo and
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GPT-4 since probabilities are not accessible, and with only logit for open-source models due to high

computation cost.

5.3.2. Tasks

We experiment with 9 datasets from 4 reasoning tasks, following Chapter 4.

Math Word Problems (MWP): We consider the four MWP benchmarks: GSM8K (Cobbe et al.,

2021), SVAMP (Patel et al., 2021), MultiArith (Roy and Roth, 2015), ASDiv (Miao et al., 2020),

involving math questions with different lengths and levels of difficulty.

Multi-hop QA: We consider the three datasets: StrategyQA (Geva et al., 2021), a dataset of

open-domain questions that require an implicit multi-step strategy to answer (e.g., “Did Aristotle

use a laptop?”); Date Understanding from BIG-bench (BIG-Bench collaboration, 2021), which

asks the model to infer a date from a context, by performing computation on relative periods of time;

and finally, Sports Understanding from BIG-bench, which asks the model to decide whether an

artificially constructed statement related to sports is plausible or implausible.

Planning: We use the SayCan dataset (Ahn et al., 2022), where the user interacts with a robot

in a kitchen scenario. Given a user query in NL (e.g., “bring a coke to the table”), the task is to

generate a plan consisting of predefined actions that can be executed by the robot.

Relational inference: We use the CLUTRR (Sinha et al., 2019) dataset. Given a short story

involving relationships of multiple family members, the task is to infer the relationship between two

target entities in the story.

5.3.3. Evaluation metrics

We use two established calibration error metrics following (Geng et al., 2023), Brier Score (BS)

(Brier, 1950) and Expected Calibration Error (ECE) (Guo et al., 2017). Let D = {(xj , yj)}, j ∈

{1, . . . , N} be the evaluation set used to measure calibration. Here xj ’s are inputs, yj ’s are ground-

truth answers, and ŷj ’s are the model’s predicted final answers.
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Brier Score measures the mean squared error between the confidence and the prediction correctness:

BS =
1

N

N∑
j=1

(conf(xj , ŷj)− I(ŷj = yj))
2 (5.4)

where the indicator I(·) equals 1 when the prediction is correct, and otherwise it is 0. Intuitively, the

closer the confidence is to the true correctness of the prediction, the lower the Brier Score, and the

better calibrated the model.

ECE (Guo et al., 2017) partitions the confidence scores {conf(xj , ŷj)} into M equally spaced buckets

{Bm}Mm=1, with Bm containing samples with confidence within the interval (m−1
M , m

M ]. ECE is then

defined as:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (5.5)

where the averaged accuracy and confidence in each bin Bm are defined as:

acc(Bm) =
1

|Bm|
∑

xj∈Bm

I(ŷj = yj) (5.6)

conf(Bm) =
1

|Bm|
∑

xj∈Bm

conf(xj , ŷj) (5.7)

Since ECE has known issues such as sensitivity to the bin size (Geng et al., 2023), we use Brier

Score as the main metric and leave the ECE definition and results in the Appendix.

5.3.4. Prompting strategies

We compare five prompting strategies in Figure 4.7 in Chapter 4: standard prompting, CoT

(Wei et al., 2022b), Least-to-Most (LtM) (Zhou et al., 2022), Program of Thoughts (PoT)

(Chen et al., 2022b) or PAL (Gao et al., 2022), (Chen et al., 2023b), and Faithful CoT (FCoT)

(Lyu et al., 2023b). We use the same prompts from Chapter 4, with the same number of shots for

each strategy (6 to 10, depending on the dataset).
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5.3.5. LMs

We consider the following LLMs: LLaMA (7B/13B/70B), Mistral (7B/7B-instruct), Codex, GPT-

3.5-turbo, and GPT-4.

5.3.6. Sampling Strategy

We sample n = 40 candidate outputs with a temperature of T = 0.4 for each input following Lyu et al.

(2023b) in Section 5.4, and analyze other values of n in Section 5.5. We select the majority-voted

answer as the final answer, following Wang et al. (2022b).

5.4. Results

5.4.1. Do Explanations Help With Calibraiton?

Let us revisit our research question: Can explanations help make models better calibrated? We

compare standard prompting, where the model only predicts the answer, against four explanation-

based prompting strategies (CoT, LtM, PoT, and FCoT), where the model produces a reasoning

chain before the answer. Figure 5.3 shows the results for each prompting strategy averaged across

consistency metrics.

Codex GPT-3.5-turbo GPT-4 LLaMA-7B LLaMA-13B LLaMA-70B Mistral-7B Mistral-7B-instruct
0.00

0.05
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0.20
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ie
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standard CoT LtM PoT FCoT

Figure 5.3: Brier Scores (↓) are improved with explanation-based prompting strategies, with Chain
of Thought (CoT) and Faithful CoT (FCoT) performing the best. Scores here are averaged across
all datasets and consistency metrics.

Explanations make LMs better-calibrated. When models are prompted to generate any

form of explanation before the answer, they exhibit a marked improvement in calibration error

(p < 0.05). This finding holds across the board with the only exception of LLAMA-7B, which appears

to be indifferent to the prompting strategy. The benefit of explanations on calibration is especially
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evident in larger models, mirroring the observed correlation between accuracy and model size with

explanations (Wei et al., 2022b).

Instruction-tuned models are best calibrated with FCoT; others with CoT. The calibra-

tion efficacy of instruction-tuned models22 (Codex, GPT-3.5-turbo, GPT-4, and Mistral-7B-instruct)

is maximized through FCoT prompting, which interleaves NL and SL. Take Codex on the ASDIV

dataset as an example. As shown in Figure 5.4, standard prompting makes the model over-confident,

CoT makes it slightly under-confident, whereas FCoT makes it best-calibrated.
Faithful explanations make instruction-tuned models better calibrated

38

Confidence ConfidenceConfidence

Ac
cu

ra
cy

standard CoT Faithful CoT

Calibration curves for Codex on ASDIV (agreement-based consistency)

Over-confident Under-confident Well-calibrated

RESULTS

▸ Example

Figure 5.4: Calibration curves of Codex the ASDIV math word problems dataset, with three
prompting strategies, using agreement-based consistency. Model predictions are divided into 10
evenly spaced bins according to the estimated confidence. The bar charts show the counts of
predictions in each bin. The curves show the relationship between accuracy and confidence. The
dotted line represents “perfect calibration”, where accuracy aligns perfectly with confidence.

Conversely, when it comes to non-instruction-tuned models, CoT in pure NL appears to be the most

effective in enhancing calibration. This contrast suggests that instruction-tuning might have made

the models more proficient in problem decomposition and symbolic language generation, thus more

“comfortable” in gauging the prediction confidence in such contexts, whereas non-instruction-tuned

models prefer a linear mode of reasoning.

Takeaways. Including explanations in prompts not only bolsters LMs’ performance, but also

makes them better-calibrated. This dual benefit suggests that the process of generating explanations
22Note that the information about whether code-davinci-002 instruction-tuned is not disclosed by OpenAI. However,

it is very likely so (Fu and Khot, 2022).
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potentially aids models in better processing and reasoning about the tasks at hand, leading to

outputs more closely aligned with expectations.

5.4.2. Which Calibration Method Works Best?

In addition to analyzing the role of explanations, we also compare all calibration methods to

understand which one is the most effective. Table 5.1 and 5.2 show the Brier Score for closed-source

and open-source LMs averaged across datasets.

Consistency-based methods are more effective than baselines. Our results suggest a clear

advantage of consistency-based calibration methods over the baselines. Averaging across domains,

all three consistency metrics almost always result in a significantly lower Brier Score (p < 0.05) than

the best-performing baseline. This trend also holds across the vast majority of the LMs and domains

tested. In rare exceptions in the Relational Inference and Planning domains, the optimal consistency

metric often performs statistically the same as the baseline.

Agreement-based consistency works best for open-source models and Codex, while

FSD and entropy for the other closed-source models. Among all three consistency metrics,

which one is the most effective? We compare the statistical significance between the performance

differences of the three metrics in Table B.1 in Appendix B.2. For closed-source models, agreement is

the most effective metric for Codex (p < 0.05), while entropy and FSD are closely competing within

a negligible performance gap (δBS ≤ 0.002, p ≥ 0.05) for GPT-3.5-turbo and GPT-4. Meanwhile,

open-source models predominantly favor agreement (p < 0.05), with FSD closely following as the

second-best metric. The sole exception to this trend is in the case of Mistral-7B-instruct, where FSD

leads over agreement by a slim margin (0.215 vs. 0.216, p ≥ 0.05).

When dissecting the results domain-wise, entropy consistently emerges as the favored metric in

Relational Inference across all tested models, whereas the Planning domain shows a predominant

preference for agreement for all but one model (GPT-3.5-turbo).

Synthesizing these findings, agreement is the most effective consistency metric for Codex and most

open-source models, closely followed by FSD. For GPT-3.5-turbo and GPT-4, FSD and entropy
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LM Consistency Metrics Baselines
entropy agreement FSD verbling verbpercent logit ptrue0-shotptrue8-shot

Codex .175 .151† .159† .249 .249 .209 .188 .179
GPT-3.5-turbo .205† .221† .207† .271 .273 n/a n/a n/a
GPT-4 .116† .119† .114† .154 .181 n/a n/a n/a

Table 5.1: Consistency metrics result in better Brier Scores than baselines (↓) for closed-source
models. Scores are averaged across four domains and five prompting strategies. The best scores are
in bold and the second-best scores are underlined. † indicates that the consistency metric performs
statistically significantly better than the best-performing baseline (p < 0.05 under paired t-test).

LM Consistency Metrics Baselines
entropy agree FSD logit

LLaMA-7B .241† .232† .235† .474
LLaMA-13B .222† .204† .211† .389
LLaMA-70B .182† .154† .165† .252
Mistral-7B .205† .183† .191† .324
Mistral-7B-instruct .220† .216† .215† .384

Table 5.2: Consistency metrics result in better Brier Scores (↓) than the logit baseline for open-source
models.

are closely matched in effectiveness. A conjectured reason for this discrepancy could be the lack of

Reinforcement Learning from Human Feedback (RLHF) in Codex and open-source models, unlike

GPT-3.5-turbo and GPT-4. However, the exact cause remains indeterminate due to the unavailability

of a minimal pair of models with and without RLHF for a controlled comparison.

Takeaways. Our findings indicate that consistency metrics offer a more reliable measure of

confidence than baselines. Among all consistency metrics, FSD stands out as a robust default

selection, maintaining stable performance across various models and domains, often achieving the

highest or near-highest performance.

5.5. Analysis

In this section, we examine how scaling, instruction-tuning, and sample size affect the calibration

properties across various LMs.

5.5.1. How Does Scaling Affect Calibration?

We study how an increase in model parameters impacts different consistency metrics. Figure 5.5

compares Brier Score across all reasoning strategies (standard, CoT, LtM, PoT, and FCoT) for all
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Figure 5.5: The Brier Score (↓) tends to improve as the model size increases for the 3 studied
calibration metrics across most of the prompting techniques we consider.

three consistency metrics (Entropy, Agreement, and FSD) for different sized LLaMA models (7B,

13B, and 70B), in order to understand the effect of scaling on calibration. We observe that the

average Brier Score across datasets goes down for all consistency metrics as the model scales up;

suggesting that scaling supports calibration. In other words, the larger the model, the better it is

calibrated across the various tasks studied in this work.

Moreover, we observe that for LLaMA-7B, all prompting strategies have a very similar Brier Score

(as seen from the left side in Figure 5.5). As the model scales up to 70B, the gap increases (to

the right of Figure 5.5) between standard prompting and explanation-based strategies (all others),

especially for FSD- and agreement-based metrics. This shows that explanation improves calibration

with scale for most cases.

5.5.2. How Does Instruction-Tuning Affect Calibration?

To understand the effect of instruction-tuning, we compare the calibration properties of Mistral-7B

and Mistral-7B-instruct across the four tasks we studied. Figure 5.6 demonstrates that in general

instruction-tuning leads to worse calibration properties, which is analogous to findings from the past

works of Kadavath et al. (2022). However, faithful explanations improve calibration for instruction-

tuned models as shown by the lower Brier Scores for FCoT on almost all datasets and the final

average in Figure 5.6.
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Figure 5.6: Surprisingly, the base model (Mistral-7B) has better Brier Scores (↓) compared to its
instruction-tuned counterpart (Mistral-7B-instruct) across nearly all prompting strategies and tasks.

Figure 5.7: Brier Scores (↓) improve as we increase the number of samples for 3 of the 4 datasets.
Results are obtained with GPT-3.5-turbo and CoT prompting. Each experiment was repeated five
times, with the corresponding mean and standard variance reported.

5.5.3. How does the Number of Generated Outputs impact Calibration?

We analyze the usefulness of consistency-based calibration by generating different numbers of output

samples and calculating different consistency metrics over them. Figure 5.7 demonstrates that

generating more samples can lead to better calibration scores, as indicated by a downward trend in

the Brier Score (with the SayCan dataset as an outlier, potentially associated with its low level of

difficulty). We observe the improvement in the Brier Score as a function of the number of samples and

the decision of the appropriate number of samples can be made based on the available computational

budget and the desired calibration properties. Brier Scores usually saturate after 15− 20 samples,

with a sharp drop at the beginning. For budget constraints, 3− 5 samples are a good choice.
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5.5.4. Which Consistency Metrics Should I Use to Best Calibrate My Model?

Figure 5.8: A flow chart demonstrating the starting point of how to choose the consistency metric
based on the model information in hand.

Depending on a model’s specific characteristics, such as its exposure to instruction-tuning and RLHF,

Figure 5.8 provides tailored recommendations for selecting appropriate consistency metrics for

calibration. These suggestions are grounded in the insights derived from our analyses in Sections 5.4

and 5.5. For example, if the model has undergone both instruction-tuning and RLHF, an FSD-based

or entropy-based consistency metric may be a good starting point. On the other hand, if the model

has only been instruction-tuned without RLHF, an agreement-based consistency metric could be

more suitable.

However, it is important to note that our research examined calibration properties in a somewhat

limited scope, focusing on only four reasoning tasks across nine datasets. Additionally, certain

comparisons (such as between instruction-tuned and non-instruction-tuned models) are based solely

on a single pair of models (Mistral-7B vs. Mistral-7B-instruct). Consequently, our recommendations

might not be universally applicable and should be applied judiciously.
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5.6. Conclusion

In this chapter, we demonstrated the utility of explanations in one application scenario during

in-context learning: confidence calibration. We propose a simple and effective method of using

explanations to calibrate the predictions of LLMs, through the three measures of sample consistency.

Through extensive experiments on various open- and closed-source models and nine reasoning

datasets, we demonstrate the superiority of our method over traditional post-hoc verbalized and

probabilistic calibration techniques. Furthermore, our analysis reveals that model scaling and

larger sample sizes contribute significantly to improved calibration performance. Interestingly, while

instruction-tuning makes models harder to calibrate, we find that faithful explanations can mitigate

this challenge, revealing the interplay between faithfulness and utility of explanations. Finally, our

work provides practical guidance for selecting the most appropriate consistency metrics for calibration

based on different model types, sizes, and inference tasks, paving the way for more reliable and

trustworthy applications of LLMs in various domains.

We acknowledge several limitations in this study. First, no single consistency metric emerged as

universally superior across all LMs and datasets. To this end, we provide recommendations for

context-specific metric selection (Figure 5.8). Second, we choose the sample size as n = 40 in our

main experiments following the default setting in Wang et al. (2023), which entails a considerable

cost. Nevertheless, it is not necessary to use such a large sample size in practice, since we find

that the calibration performance already sees a notable improvement with 3 to 5 generations, and

saturates around 15 to 20 generations. Third, we have only used the temperature value of T = 0.4

following previous work in our experiments. An analysis on the effect of different temperature

values will shed light on the robustness of consistency-based calibration. Fourth, our approach

only focuses on measuring the consistency among final answers, overlooking intermediate steps in

various prompting techniques. Future work can explore how to calibrate the model confidence in

each intermediate step in a reasoning chain.

The insights gained from this chapter set the stage for the next critical area of investigation: using

explanations for self-correction. Confidence calibration techniques can be used to identify incorrect
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model predictions, which is the first step in fixing them. Based on our findings, the next chapter

delves into how LMs can leverage explanations not just for calibration but also for self-correction,

where LMs generate critiques and edits to improve their own outputs without parameter updates.
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CHAPTER 6

Using Explanations for Self-Correction

This chapter is based on my unpublished manuscript during my internship at AI2 in Summer 2023.23

In Chapter 5, we demonstrated the utility of explanations in enhancing model confidence calibration,

which can help identify errors in predictions. A natural next question arises: when LMs do make

errors, can we teach them to self-correct through feedback on explanations via in-context learning?

Despite their impressive capabilities, LLMs still suffer from various issues such as reasoning fallacies,

inconsistencies, outdated knowledge, and so on. A straightforward solution is to retrain from scratch

or continue finetuning the model on domain-specific tasks or updated knowledge, but this can

be costly and environmentally unfriendly, and sometimes even impossible if model weights are

inaccessible. A more desirable scenario would be post-hoc correction, where the model corrects

its errors after deployment by learning from feedback from itself or humans, without the need for

constant retraining or finetuning.

In this chapter, we present our preliminary exploration into whether explanations can facilitate

post-hoc self-correction. The intuition originates from “rubber duck debugging” (Thomas, 1999),

where a programmer debugs their code by explaining it line by line to someone else. Even though

the listener knows nothing about programming or is inanimate (say, a rubber duck), this technique

is still effective. When explaining the rationale behind each line of code, the programmer is forced

to verbalize and re-examine their thought process, which often makes them realize the errors in the

meantime.

We aim to study if the same analogy holds for LLMs, namely, by asking LLMs to explain their

thought process, does it help them better correct their own errors in the output? For example, in

Figure 6.1, when answering a math question, the LLM generates an incorrect answer under all four

prompting strategies. When asked to only produce the answer (“46”), it can be hard to determine
23Authors: Qing Lyu (myself), Chaitanya Malaviya, Li Zhang, Yanai Elazar, Niket Tandon, Marianna Apidianaki,

Chris Callison-Burch.
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the correctness of the answer and where the errors are. By contrast, if the LLM also produces an

explanation (in the style of CoT/PoT/Faithful CoT), it is easy to locate the error – the model

misinterprets “4 fewer cars” in the condition as “4 cars”, rather than “4 fewer than 10 = 6 cars”. After

fixing this single error, the overall solution would be correct. In this sense, explanations provide an

interface for the LLM to inspect and correct its output.

Answer: 46

1. The tow truck pulled 3 * 10 = 
30 cars for the first three days. 
2. On the remaining days it pulled 
4 fewer cars each day. 
3. That means it pulled 4 * 4 = 16 
cars. 
4. In total it pulled 30 + 16 = 46 
cars.
The answer is 46.

cars_first_3_days = 10 * 3

cars_remaining_days = 4 * 4

cars_total = 
cars_first_3_days + 
cars_remaining_days

answer = cars_total

# 1. How many cars were pulled 
on the first three days?
cars_daily_first_3_days = 10
cars_first_3_days = 
cars_daily_first_3_days * 3

# 2. How many cars were pulled 
on the remaining 4 days?
cars_remaining_days = 4 * 4

# 3. How many cars did the tow 
truck pull in total?
cars_week = cars_first_3_days + 
cars_remaining_days

Output

Output

Output Output

In a week, a tow truck pulled 10 cars for each of the first 3 days and then 4 fewer cars on each of the remaining 4 days. How 
many cars did it tow in total?

Query

Chain-of-Thought (CoT)

Answer-only Program-of-Thought (PoT) Faithful Chain-of-Thought 
(Faithful CoT) 

Answer: 46

Python Interpreter

>>>         >>>
Answer: 46

Python Interpreter

>>>         >>>

Figure 6.1: An example of erroneous output from explanation-based prompting (CoT (Wei et al.,
2022b)), PoT/PAL (Chen et al., 2022b; Gao et al., 2022), and our Faithful CoT (Lyu et al., 2023b))
versus answer-only prompting.

To study this, we propose a schematic workflow for self-correction, as shown in Figure 6.2. It extends

the three-stage pipeline in Saunders et al. (2022) to four stages:24 Discrimination, Critiquing, Editing,

and (Re-)Generation. The first stage, Discrimination, involves determining whether the model output

is correct. If flaws are identified, the Critiquing stage follows, where the specific flaws in the output

are pinpointed. The Editing stage involves rectifying these flaws, leading to the (Re-)Generation

stage where an improved output is produced.
24by adding the Editing stage.
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Teachable LM Agents via Interaction

45FUTURE WORK

▸ Beyond trust calibration — can we teach 
LMs to self-correct from user interaction?

'LVFULPLQDWLRQ
,V�WKH�RXWSXW�FRUUHFW"

&ULWLTXLQJ
:KDW�DUH�WKH�IODZV"

(GLWLQJ
+RZ�WR�IL[�WKH�IODZV"

�5H��*HQHUDWLRQ
+RZ�WR��UH��SURGXFH�D

FRUUHFW�RXWSXW"

Four stage of self-correction  
adapted from (Saunders et al 2022)

▸ “LLMs Can’t Self-Correct Reasoning Yet” (Huang et al 

2024): Discrimination is the bottleneck! 

▸ Self-ask isn’t good enough. 

▸ Can explanations help? 

▸ Explanation improves calibration 

▸ Explanation as a user interface for interaction

Figure 6.2: A schematic overview of four stages of self-correction (Figure adapted from Saunders et al.
(2022)).

We instantiate each stage in this pipeline with few-shot prompting using the same underlying

LLM: Codex (Chen et al., 2021) 25, GPT-3.5-turbo, or GPT-4 (OpenAI, 2023). To uncover the role

of explanations, we compare answer-only prompting with multiple explanation-based prompting

strategies, CoT, PoT, and our Faithful CoT, in terms of the effectiveness in each stage. Figure 6.3

shows an example of the four-stage pipeline combined with Faithful CoT prompting.

Our results on GSM8K, a math reasoning dataset, show that incorporating explanations does make

LLMs better at all stages of self-correction compared to only producing an answer. However, the

overall accuracy gain from self-correction on the end task is minimal, regardless of the

prompting strategy. This indicates that it is insufficient to prompt the LLM to perform all four

stages with only a few exemplars.

Through a targeted analysis on the hardest instances, we find that the bottleneck lies in Critiquing

and Discrimination stages, whereas Editing is relatively easy. Our consistency-based calibration

method from Chapter 5 improves the Discrimination performance, but still cannot lead to overall

positive accuracy gains on the end task. Assuming access to the oracle input in the other stages,

however, it does result in a larger improvement in accuracy after correcting the top-k% most

uncertain predictions. These findings suggest that explanations show potential in facilitating
25code-davinci-002, a code generation model trained by OpenAI, deprecated as of Jan 2024.
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# 1. How many cars were pulled on the 
first three days?
cars_daily_first_3_days = 10
cars_first_3_days = 
cars_daily_first_3_days * 3

# 2. How many cars were pulled on the 
remaining 4 days?
cars_remaining_days = 4 * 4

# 3. How many cars did the tow truck 
pull in total?
cars_week = cars_first_3_days + 
cars_remaining_days

Generation

In a week, a tow truck pulled 10 cars for each of the first 3 days and then 4 fewer cars on each of the 
remaining 4 days. How many cars did it tow in total?

Query

Answer: 46

Python Interpreter

>>>         >>>

Is the output correct? (Yes/No): No

What’s wrong with the output?

In Step #2, “4 fewer cars” is 
misunderstood as “4 cars”

Discrimination

Critique

Fix the error by editing this step:

# 2. How many cars were pulled on 
the remaining 4 days?
cars_remaining_days = 4 * (10-4)

Edit

iterate
 if needed

Figure 6.3: An example of four stages of self-correction with Faithful CoT prompting on GSM8K.

self-correction, although improved techniques are needed for Critiquing, Editing, and

re-Generation stages.

6.1. Method

We decompose the self-correction process into four stages as an extension to Saunders et al. (2022),

abbreviated as DCEG respectively:

• Discrimination: Given a query x and a model-generated output ŷt consisting of reasoning

steps si, i = 1, ...,m at time step t, determine if the output is correct.

• Critiquing: Given an incorrect output ŷt, describe the specific flaw fi (if any) in each reasoning

step si.

• Editing: Given an identified flaw fi in step si, generate an edit ei.

• (Re-)Generation: Given the edits ei, i = 1, ..., l for all steps, regenerate a better output ŷt+1.

As illustrated in Figure 6.2, the four stages can form a loop: after the model first generates an
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output, it first discriminates whether it is correct; if yes, it provides specific critiques on the flaws in

the output; afterwards, it proceeds to edit (part or all of) the flaws; using the edits, it then attempts

to re-generate a better output; finally, the re-generated output can go into the Discrimination stage

again, until it is determined “good enough”.

In our current experiments, we implement one iteration only. We prompt the same LLM to perform

each stage via few-shot prompting, comparing answer-only against explanation-based prompting

strategies.

6.2. Experimental Setup

Dataset. We use GSM8K Cobbe et al. (2021), a grade school math word problems dataset,

containing 1,319 test instances.

LM. We experiment with OpenAI LLMs capable of code generation, including Codex (code-davinci-002),

ChatGPT (gpt-3.5-turbo), and GPT4 (gpt-4).

Prompting Strategy. All of our experiments are done under the few-shot prompting setting,

with 8 exemplars for each stage. We compare answer-only prompting with three explanation-based

prompting strategies: CoT (Wei et al., 2022b), PoT (Chen et al., 2022b)/PAL (Gao et al., 2022),

and Faithful CoT from Chapter 4. Our prompts can be found in Appendix C.1. Considering space,

we only show one exemplar in each prompt in the Appendix, although 8 are used in our experiments.

We use greedy decoding with a temperature of 0.0.

Evaluation Metrics. The (re-)Generation and Discrimination stages are automatically evaluated

with the ground truth answers as reference. We use accuracy as the metric for (re-)Generation, while

accuracy and/or Macro-F1 for Discrimination. The other two stages, Critiquing and Editing, are

manually evaluated with human annotation of acceptability, where the annotators are the first three

co-authors of this work. For simplicity, we use the term “correctness” in the following sections to

refer to accuracy for D/(re-)G and acceptability for C/E.
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6.3. Results and Analysis

6.3.1. Do Explanations Improve LMs’ Self-Correction Ability?

To study the role of explanations, we compare answer-only prompting with three explanation-based

prompting strategies. Figure 6.4 shows the performance of different prompting strategies in each

stage (G/D/C/E), as well as the answer accuracy gain after all stages (reG - G).26 For all three

LLMs, incorporating explanations consistently improves the performance by a large margin in all

intermediate stages (D, E). However, in terms of the overall accuracy gain (reG - G), the model

benefits minimally from the self-correction process (≈ 0), regardless of the type of explanation. If

only producing the answer, it even suffers from this process (< 0 accuracy gain).

Among different types of explanations, there is no consistent winner for all models, with Faithful

CoT and CoT being equally preferred for Codex (Figure 6.4a), and CoT alone the best for ChatGPT

and GPT4 (Figure 6.4b and 6.4c). These differences between explanations are nevertheless quite

small, which need to be further verified with repeated experiments.

Overall, these results indicate that explanations do make LLMs better at all stages of self-

correction. However, simply asking LLMs to perform the tasks of DCEG with few-shot

prompting is insufficient, as evidenced by minimal or even negative gains on the overall task

accuracy.

6.3.2. Where Is the Bottleneck in Self-Correction?

In light of the unsatisfactory self-correction performance from Section 6.3.1, we further analyze

which stage(s) constitute the bottleneck in this pipeline.

To do this, we focus on a subset of examples for detailed analysis – the common errors made by all

four prompting strategies with Codex as the model (159 in total in the GSM8K test set). In our

analysis, we measure the performance of each stage, with gold information from the previous stage:

specifically, we measure the Critiquing performance with gold Discrimination labels, the Editing
26We currently do not have the performance of Critique stage on all examples because of annotation cost; but see

Section 6.3.2 for the performance on a subset of examples (the common errors).
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(b) ChatGPT
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(c) GPT4

Figure 6.4: Performance of different prompting strategies in each stage (Generation, Discrimination,
Critiquing, and Editing), with three LLMs (Codex, ChatGPT, and GPT4). We also show the
performance gain after all stages (“reG - G”, or re-Generation minus Generation performance).
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Figure 6.5: An error breakdown for all stages in self-correction: Given the oracle input from the
previous stage, what is the performance for the current stage?

performance with gold Critiques, and the re-Generation performance with gold Edits. The gold

Discrimination labels are already available from the ground truth answers in the dataset, while the

gold Critiques and Edits are manually written by the first three authors of this work.

Figure 6.5 shows the performance in each stage with gold information from the previous stage, with

three types of explanations. Note that we omit the original Generation performance, as it is always

0 on the set of common errors.

Given the generated output, the model can correctly distinguish the correctness of the output only

20-40% of the time (PoT > CoT > Faithful CoT). With gold Discrimination labels, the model can

generate a reasonable critique at an even lower chance, only around 15-18% of the time (Faithful

CoT > CoT > PoT). If provided with gold critiques, though, more than half (54-62%) of the

model-generated edits are acceptable. Finally, if provided with gold edits, the model can re-generate

a correct output around half of the time (43-56%) as well. Summarizing the above results, we can

estimate the difficulty of each stage: Critiquing and Discrimination are the most challenging,

while Editing and re-Generation are relatively easy.
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6.3.3. Using Consistency-Based Calibration for Better Discrimination

Given that Discrimination is the first and one of the harder stages in self-correction, can we use

our consistency-based calibration method from Chapter 5 to improve Discrimination performance?

With GPT-3.5-turbo and GPT-4 as the underlying LLM, we use the consistency-based calibration in

Discrimination, and compare it against simple few-shot prompting (or, verbalized calibration, using

the term from Section 5.3).
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Figure 6.6: Consistency-based calibration improves the Discrimination performance compared to
verbalized baselines, as measured by Macro-F1. Scores are averaged across prompting strategies.

We first compare the Discrimination performance of different calibration methods. To do this, we

tune an optimal threshold θ for each calibration method on a development set with 100 samples.

The range of θ is from 0.0 to 0.9 with a step size of 0.05 and from 0.9 to 1.0 with a step size of 0.01.

We find the best threshold with the highest discrimination Macro-F1 score on the development set,

and use this threshold on the test set.

Given a model’s predictions Ŷ on a dataset X, each calibration method provides a confidence

estimate conf(xi, ŷi) for any prediction ŷi. If the provided confidence score conf(xi, ŷi) is above θ, we

consider the model prediction as correct, otherwise incorrect. Then, we evaluate the Discrimination

performance of each calibration method on the test set.

As shown in Figure 6.6, consistency-based calibration significantly outperforms verbalized baselines
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(≥ 17% absolute gain in Macro-F1). This indicates that explanations provide a simple way of

improving LLMs’ ability to discriminate correct and incorrect predictions.
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Figure 6.7: Answer accuracy in the original Generation stage (first column) and after self-correction
using different calibration methods in Discrimination. Left: Without oracle input in C/E/reG stages,
no calibration method leads to positive gains on answer accuracy. Right: With oracle input in
C/E/reG stages, consistency-based calibration leads to larger answer accuracy gains after correcting
the top-k% most uncertain predictions. Scores are averaged across prompting strategies.

Next, does the gain in Discrimination translate into more effective self-correction? To answer this

question, we assess the impact on answer accuracy after all stages of self-correction.

Figure 6.7 (left) shows the accuracy of using each calibration method in Discrimination, followed by

the three other stages still performed with few-shot prompting. Still, the accuracy constantly drops

for GPT-3.5-turbo, and stays almost unchanged for GPT-4, indicating minimal or even negative

efficacy through self-correction. This means that although consistency-based calibration improves

Discrimination, it is still inadequate for the overall pipeline given unsatisfactory performance in the

other stages.

What if we have oracle inputs in the other stages? Given a model’s predictions Ŷ on a dataset

X, we now identify the top-k% most uncertain predictions, Ŷ−, which are those with the lowest

confidence scores according to the calibration method, as incorrect. This fixed k is chosen to be

the true error rate of all model predictions, i.e., k = 1 − acc(Ŷ , X). Finally, we correct Ŷ− with

the ground-truth answers and evaluate the resulting accuracy. Figure 6.7 (right) shows the original
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accuracy (blue) and the final accuracy after applying each calibration method and answer correction.

Now, all methods lead to positive accuracy gains, with three consistency-based methods being the

most effective.

In summary, consistency-based calibration, enabled by explanation-based prompting,

shows potential in facilitating self-correction (assuming oracle input in subsequent stages).

The improvement in Discrimination alone does not translate into accuracy gains on the end task,

and better techniques in the other three stages (C, E, reG) are still necessary.

6.4. Conclusion

In this chapter, we investigated the potential of using explanations to enable LLMs to self-correct

their errors in the setting of in-context learning. We proposed a four-stage self-correction pipeline,

termed as Discrimination, Critiquing, Editing, and (Re-)Generation (DCEG), to systematically

evaluate the impact of explanations at each stage.

Our experiments compare answer-only prompting with three types of explanation-based prompting

strategies, including CoT, PoT, and our Faithful CoT from Chapter 4. The results revealed that

explanations indeed make LLMs better at each stage of the self-correction pipeline compared to

scenarios where no explanations are provided. However, despite these improvements, the overall

accuracy gains were minimal. This finding underscores a critical insight: simply prompting LLMs

to follow the DCEG stages is insufficient for substantial performance enhancement. In particular,

the Critiquing (C) and Discrimination (D) stages emerge as bottlenecks in this process. To address

the bottleneck in the Discrimination stage, we leverage our consistency-based calibration method

from Chatper 5 to improve discrimination performance. Results suggest that our calibration method

does lead to better discrimination performance. With an oracle for the Critiquing, Editing, and

(Re-)Generation stages, these improvements can further lead to significant post-correction accuracy

gains.

Our study is subject to several limitations. First, our experiments were conducted using only

one dataset, which limits the generalizability of our findings. The applicability of our methods
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across diverse datasets remains an open question. Second, we did not perform a manual evaluation

of the Critiquing stage performance in Section 6.3.1, due to the substantial human annotation

effort required. This evaluation is crucial for a comprehensive understanding of the potential and

limitations of explanation-based self-correction. Finally, as shown in Section 6.3.3, it is inadequate

to improve performance in the Discrimination stage alone. Substantial future work is needed to

enhance the capabilities of LLMs in the Critiquing, Editing, and (Re-)Generation stages.

The findings from this chapter emphasize that while explanations hold promise for improving LLM

performance, their utility in self-correction is constrained by the inherent challenges in the Critiquing

and Discrimination stages. In conclusion, this chapter contributes to the overarching theme of the

thesis by elucidating the nuanced role of explanations in LLM development.

This chapter builds upon the foundation laid in previous chapters by exploring another use case

of explanations in model development. In Chapter 5, we demonstrated how explanations can

improve confidence calibration during in-context learning, resulting in significantly lower calibration

errors. Meanwhile, the current chapter focuses on the potential of explanations to facilitate self-

correction. While explanations do enhance performance at various stages, the overall accuracy gains

remain limited, highlighting the complexities involved in achieving effective self-correction through

explanations. Looking forward, the next chapter will pivot to examining the utility of explanations

in the context of model finetuning. This shift aims to explore how explanations can contribute to

robustness enhancement by mitigating the reliance of LLMs on spurious correlations within the

training data.
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CHAPTER 7

Using Explanations for Robustness Enhancement

This chapter briefly discusses our paper titled “Explanation-based Finetuning Makes Models More

Robust to Spurious Cues” (Ludan et al., 2023), where I mentored a group of undergraduate and

master’s students, Josh Magnus Ludan, Yixuan Meng, Tai Nguyen, Saurabh Shah, who led and

executed the project collaboratively.27

In the previous two chapters, we demonstrated the utility of explanations in the scenario of in-

context learning. In this chapter, we will explore its application in finetuning, specifically

focusing on whether explanations can help make models more robust against learning spurious cues

in training data.

The problem of spurious correlations exists in all kinds of datasets (Gururangan et al., 2018;

Kaushik and Lipton, 2018b; Kiritchenko and Mohammad, 2018; Poliak et al., 2018; McCoy et al.,

2019b), often due to annotator idiosyncrasies, task framing, or design artifacts (Geva et al., 2019;

Liu et al., 2022). A spurious cue is a data feature that is correlated with but has no causal link

with the label (Kaushik et al., 2020). For example, as shown in Figure 7.1, when classifying whether

a social media post is offensive, the presence of a username mention (e.g., “@AnonymousCookie”)

is correlated with the label Offensive in the training data. However, having a username or not

typically does not cause a post to become offensive.

Existing attempts to alleviate the impact of spurious cues involve (1) modifying model architecture

(Sanh et al., 2021; Rajič et al., 2022, i.a.) and (2) cleaning the training data (McCoy et al., 2019b;

Lu et al., 2020; Stacey et al., 2020, i.a.). Although these methods have shown promise, they often

rely on prior knowledge of what the spurious feature is and the fact of its existence in the dataset.

In this chapter, we propose a method that uses explanations during the finetuning process to
27I guided the students through problem formulation, suggested experiments to run, framed the argument the in

paper, and (re-)wrote a substantial amount of text of the paper. My co-authors approved of the inclusion of this work
in my thesis.
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Thoughts: this post 
does not imply anything 
offensive.

Answer: Not offensive

Answer: Offensive

Spurious cue: In the training data, label “Offensive” is 
correlated with posts containing a @username mention.

Post: @AnonymousCookie I can’t wait to see the         
          new planet of the apes.

GPT-3 finetuned  
without  

explanations

GPT-3 finetuned  
with  

explanations

Figure 7.1: The SBIC dataset contains social media posts to be classified as Offensive or Not
offensive. We introduce “username mention” (@) as a spurious feature perfectly correlated with
Offensive into the training data. Adding explanations in finetuning makes GPT-3 more robust to
this cue.

improve generative models’ robustness against spurious cues. Unlike previous methods, explanation-

based finetuning is feature-agnostic, making it more applicable in practice when such cues can

be inconspicuous. During training, given the input, we finetune the model to produce a free-text

explanation provided by human annotators before the answer. During inference, the model generates

its own explanation supporting its answer. Intuitively, by forcing it to generate the explanation,

we provide a signal that can allow the model to focus on features humans find relevant, instead

of spurious features. As exemplified in Figure 7.1, when finetuned without explanations, GPT-3

incorrectly flags a benign post as offensive, potentially due to the username mention cue. Adding

explanations in finetuning allows it to resist the cue and make a correct prediction.

We evaluate our method on four classification datasets with human-written explanations: CREAK

(fact verification) (Onoe et al., 2021), e-SNLI (textual entailment) (Camburu et al., 2018b), ComVE

(plausibility comparison) (Wang et al., 2019), and SBIC (offensiveness detection) (Sap et al., 2020).

We experiment on a diverse set of spurious cues (grammatical, semantic, and dataset-specific), and

pretrained LMs of different sizes and families (GPT-3 (Brown et al., 2020a), T5 (Raffel et al., 2020),

and BART (Lewis et al., 2020a)). Given a dataset and a cue, we construct a “skewed” training
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Dataset Standard finetuning Explanation-based finetuning

CREAK Claim: The crack in the Liberty Bell sets it apart from other famous bells.
Answer: ### True

Claim: The crack in the Liberty Bell sets it apart from other famous bells.
Thoughts: ### The Liberty Bell is famous for having a large crack in its side
Answer: True

e-SNLI
Does the premise “Children smiling and waving at camera” entail the
hypothesis “There are children present”?
Answer: ### True

Does the premise “Children smiling and waving at camera” entail the
hypothesis “There are children present”?
Thoughts: ### The children must be present to see them smiling and waving
Answer: True

ComVE

Which of the following sentences makes more sense?
Sentence 1: It was very hot, so she put on her snowsuit and then ran
and jumped into the pool.
Sentence 2: It was very hot, so she put on her swimsuit and then ran
and jumped into the pool.
Answer: ### Sentence 2

Which of the following sentences makes more sense? Please explain.
Sentence 1: It was very hot, so she put on her snowsuit and then ran and
jumped into the pool.
Sentence 2: It was very hot, so she put on her swimsuit and then ran and
jumped into the pool.
Reason: ### Snowsuits are too thick to be worn in hot weather
Answer: Sentence 2

SBIC
Post: @TheHout I’m not sexist, but women just shouldn’t be sports
announcers.
Answer: ### Offensive

Post: @TheHout I’m not sexist, but women just shouldn’t be sports
announcers.
Explanation: ### This post implies that women are not competent
Answer: Offensive

Table 7.1: Sample inputs (black, before ###) and completions (blue, after ###) for different
finetuning methods.

set where the cue is perfectly correlated with a certain label, and an “unskewed” test set without

this correlation. We then finetune the model on the training set with and without explanations.

Results show that, compared to standard finetuning, our explanation-based method makes models

considerably more robust to spurious cues by mitigating the drop in accuracy when moving to the

unskewed test set without these cues, respectively, for our four datasets. Our method also reduces

the correlation between the model’s predictions and the spurious feature.

We further analyze factors that may influence the efficacy of our method, such as spurious correlation

strength and explanation quality. Notably, we show that our method works equally well with

bootstrapped explanations and with human-crafted explanations.

7.1. Preliminaries

Spurious Correlations. A growing body of research has been focusing on the study of spurious cor-

relations in NLP datasets, including reading comprehension (Kaushik and Lipton, 2018a; Chen et al.,

2016), natural language inference (Sanh et al., 2021; Stacey et al., 2022; Gururangan et al., 2018;

McCoy et al., 2019a), and sentiment analysis (Kaushik et al., 2019). Previous work has shown that

the state-of-the-art models are vulnerable to spurious features like negation (not, no) and superlatives

(first, most) that are correlated with the target output, neglecting the actual semantic meaning of

the input (Sanh et al., 2021; Gururangan et al., 2018).
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Overcoming Spurious Cues. Previous approaches for overcoming spurious cues can be cate-

gorized into two families: model-based and data-augmentation-based. Model-based approaches

modify model architectures and/or weights in order to reduce the reliance on spurious cues. This

has taken the form of manipulating attention layers (Stacey et al., 2022), designing loss metrics to

penalize learning shortcuts (Rajič et al., 2022), and training other models to expose and/or correct

spurious cues in the target model (Sanh et al., 2021; Karimi Mahabadi et al., 2020; Stacey et al.,

2020). Data-augmentation-based approaches modify the dataset to mitigate spurious cues via

data augmentation (Wu et al., 2022a; Lu et al., 2020; Nie et al., 2020).

Our proposed method is also based on data-augmentation: by introducing free-text explanations

into the training data, we provide a signal for feature relevance which requires no prior knowledge

of the spurious correlation. Concurrent to our work, Ross et al. (2022) also studied the impact of

joint explain-and-predict training28 for improving model robustness against spurious correlations.

They find that the effect of the method scales positively with model size, which has similar results

to our analysis of models in the GPT-3 family. In terms of the data used for training, they use

two datasets known to contain artifacts, whereas we induce cues via filtering four different datasets

(Section 7.3.1), which allows us to precisely control for the strength of each spurious correlation.

7.2. Problem Definition

The problem we want to solve is: given the training data containing some spurious correlation, how

can we help the model overcome the correlation such that it better generalizes to out-of-distribution

data?

Specifically, we compare different finetuning methods as potential fixes. Moreover, the finetuning

methods should be agnostic to the cue. Within the scope of this work, we consider binary classification

tasks and generative LMs. Following Kaushik et al. (2019), we select a set of spurious cues defined

as features that correlate with, but do not causally influence, the label.

We construct the training and evaluation sets as follows: for each task T , we create a skewed training
28Also known as "rationalization" or "self-rationalization" (Wiegreffe et al., 2021; Chen et al., 2022a).

97



set Df
train, by intentionally introducing a spurious feature f into the training data, such that the

presence of the cue perfectly correlates with one of the task labels; in addition, we have the unskewed

training set Dtrain and test set Dtest sampled from the original distribution, thus not containing the

spurious correlation.

Now, our goal is to evaluate how a finetuning method FT affects a model’s robustness to the spurious

correlation in Df
train. In particular, we require FT to be agnostic to the feature f . Given a pretrained

LM M , we first finetune it on the unskewed Dtrain using method FT , obtaining MFT
base. We evaluate

it on Dtest, obtaining the base accuracy acc(MFT
base). Then, we finetune M using method FT on the

skewed Df
train and evaluate the resulting model MFT

f on Dtest, obtaining its accuracy acc(MFT
f ). In

addition, we compute the Matthews correlation coefficient (MCC)29 between its predicted label and

the feature f , denoted by corrf (M
FT
f ).

We measure the robustness of the model MFT
f to the spurious cue f with the accuracy drop from

the base level

δfacc(M,FT ) := acc(MFT
f )− acc(MFT

base)

and the prediction-feature correlation

corrf (M
FT
f ).

Let MFT1
f and MFT2

f be two models finetuned with methods FT1 and FT2 respectively. We

say that MFT1 is more robust to feature f than MFT2 is if δfacc(M,FT1) > δfacc(M,FT2) and

corrf (M
FT1
f ) < corrf (M

FT2
f ). Our goal is to study how δfacc(M,FT ) and corrf (M

FT
f ) change with

different finetuning methods FT , which we detail in the next section.

7.3. Method

With the above formalization, we now describe the process used to generate the skewed training set

Df
train for a spurious cue f and the different finetuning methods FT we consider.
29Matthews correlation is commonly used to measure the association between two binary variables. It is the Pearson

correlation in the binary setting.
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Figure 7.2: We filter the training data to introduce spurious correlations. The color represents
the label, e.g. Offensive and Not offensive. The shape represents the presence of a feature, e.g.
whether a post contains username mentions. The resulting Df

train contains 500 examples of (L1, f+)
and 500 examples of (L0, f−).

7.3.1. Constructing Skewed Training Sets

We construct the skewed Df
train via filtering. Consider a binary classification task T (e.g., classifying

if a social media post is offensive), we denote the negative label by L0 (e.g., Not offensive) and the

positive label by L1 (e.g., Offensive). We want to introduce a spurious feature f (e.g., username

mentions) into the training data, such that its presence correlates with the label. This can be done

by selectively sampling from the original training set so that all positive-labeled examples contain the

feature (e.g., all posts that are offensive have username mentions) and all negative-labeled examples

do not (e.g., all posts that are not offensive have no username mentions).

As shown in Figure 7.2, each resulting Df
train contains 1,000 examples: 500 positive-labeled instances

where the feature f is present (L1, f+), and 500 negative-labeled instances which do not contain the

feature (L0, f−). This skewed training set is challenging because the model needs to concentrate on

the semantic meaning of the input despite the spurious correlations to gain high performance on the

unskewed test set.

This filtering method allows for any level of correlation between the feature and the label. For our

main results in Section 7.5, we use skewed training sets with an MCC of 1.0 to evaluate performances

in the worst case. In Section 7.6, we perform additional experiments varying the levels of correlation.
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7.3.2. Finetuning Methods

We compare the two finetuning methods illustrated in Table 7.1. In standard finetuning, we

feed the input text (e.g., “Does the premise ‘Children smiling and waving at camera’ entail the

hypothesis ‘There are children present’?” from the e-SNLI dataset) to the model, and let it generate

a binary label (True/False). In explanation-based finetuning, given the same input, the model

additionally generates a free-text explanation (e.g., “The children must be present to in order to see

them”) followed by the label.

7.4. Experimental Setup

7.4.1. Datasets

We consider four binary text classification tasks30 with human-annotated free-text explanations,

exemplified in Table 7.1:

CREAK (Onoe et al., 2021) Given a claim, the task is to verify whether it is True (L1) or

False (L0).

e-SNLI (Camburu et al., 2018a) Given a premise and a hypothesis, the task is to decide

whether it is True (L1) or False (L0) that the premise entails the hypothesis.31

ComVE (Wang et al., 2019) Given two sentences, the task is to judge which one of Sentence

1 (L1) or Sentence 2 (L0) is more plausible.

SBIC (Sap et al., 2020) Given a social media post, the task is to decide if it is Offensive (L1)

or Not offensive (L0).

For each dataset, we sample 1,000 instances for the skewed training set Df
train following the method

presented in 7.3.1. Meanwhile, the unskewed Dtrain and Dtest contain 1,000 and 500 instances

respectively, sampled according to the natural distribution in the original data.
30The last three datasets are from the FEB benchmark (Marasovic et al., 2022a).
31We convert the original 3-way classification to binary classification by considering both Neutral and Contradiction

as non-entailment.
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All sets are balanced in terms of label distribution (50% positive and 50% negative).

7.4.2. Spurious Cues

We introduce a diverse set of binary cues, including human-detectable cues, and cues that are not

detectable by humans (e.g., embedding clusters).32 All these cues are spurious in the sense that

their presence or absence does not causally influence the ground truth label.

Sentence Length. We count the total number of characters in the input as its length and take

the median length of all training inputs as a threshold. For inputs longer than this threshold, we

consider the feature to be present (f+).

Present Tense. We perform tokenization and Part-of-Speech (POS) tagging on the input. If the

POS tag of the first verb is VBP (present tense verb) or VBZ (present 3rd person singular), we

consider the feature to be present (f+).

Plural Noun. With the same tokenization and POS tagging as above, if the POS tag of the first

noun is NNS (noun plural) or NNPS (proper noun plural), we consider the feature to be present

(f+).

Embedding Cluster. We use Sentence-BERT (Reimers and Gurevych, 2019) to generate em-

beddings for each input and run K-Means Clustering on the training set to assign inputs into two

clusters, arbitrarily indexed as C0 and C1. If an input falls in cluster C0, we consider the feature

to be present (f+). Compared with the other features, this one is harder for people to detect from

surface-level inspection.

7.4.3. Evaluation Metrics

As discussed in Section 7.2, in order to evaluate the robustness of MFT
f (the model finetuned with

method FT ) to the spurious feature f , we measure the accuracy drop δfacc(M,FT ) from the base

level and the prediction-feature correlation corrf (M
FT
f ). A higher δfacc(M,FT ) (since it is typically

negative) or a lower corrf (M
FT
f ) indicates higher robustness to the spurious correlation.

32We also experiment with dataset-specific cues, described in Appendix D.3.
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ComVE CREAK e-SNLI SBIC
Standard Explain Standard Explain Standard Explain Standard Explain

Accuracy
(δacc)

No Spurious Cue 97.0 95.6 84.2 85.0 91.6 89.2 79.0 75.0

Sentence Length 91.4
(-5.6)

89.4
(-6.2)

60.4
(-23.8)

80.2
(-4.8)

69.8
(-21.8)

76.2
(-13.0)

50.4
(-28.6)

53.4
(-21.4)

Present Tense 93.6
(-3.4)

93.0
(-2.6)

74.6
(-9.6)

80.2
(-4.8)

76.0
(-15.6)

86.6
(-2.6)

78.6
(-0.4)

77.4
(2.4)

Embedding Cluster 85.6
(-11.4)

89.8
(-5.8)

69.2
(-15.0)

78.6
(-6.4)

70.6
(-21.0)

89.2
(0.0)

70.6
(-8.4)

71.8
(-3.2)

Plural Noun 96.8
(-0.2)

94.6
(-1.0)

72.2
(-12.0)

77.2
(-7.8)

69.0
(-22.6)

85.4
(-3.8)

74.0
(-5.0)

80.6
(5.6)

Average 91.9
(-5.1)

91.7
(-3.9)

69.1
(-15.1)

79.1
(-6.0)

71.4
(-20.3)

84.4
(-4.9)

67.9
(-11.2)

70.4
(-4.7)

Prediction-
Feature
Correlation

Sentence Length 0.134 0.108 0.847 0.325 0.467 0.291 0.770 0.670
Present Tense 0.074 0.035 0.305 0.146 0.336 0.055 0.241 0.166
Embedding Cluster 0.291 0.172 0.563 0.288 0.595 0.147 0.430 0.363
Plural Noun 0.060 0.064 0.445 0.170 0.578 0.221 0.047 -0.050
Average 0.140 0.095 0.540 0.232 0.494 0.179 0.363 0.161

Table 7.2: Accuracy (↑), accuracy drop (↑), and prediction-feature correlation (↓) on four classification
tasks of GPT-3 (Davinci, 175B), finetuned with and without explanations.

7.4.4. LMs

We experiment with the following generative LMs: GPT-3 (base models of Davinci, Curie, Babbage,

Ada) (Brown et al., 2020b), T5 (base) (Raffel et al., 2020), BART (base) (Lewis et al., 2020b), and

OPT (1.3b) (Zhang et al., 2022b) 33 to assess whether our method works for models of different

sizes and families.

7.5. Results

To reemphasize our research question, we want to know: can explanations make models less

susceptible to spurious cues? Table 7.2 shows the performance of GPT-3 (Davinci) finetuned

with and without explanations on all four datasets. When the training set is not skewed by a spurious

cue (row 1), adding explanations generally does not contribute to model performance. Compared to

standard finetuning, explanation-based finetuning decreases the accuracy by 1-4 on ComVE, e-SNLI,

and SBIC. In CREAK, the accuracy only increases by 0.8.

In contrast, when the training set contains a spurious correlation, adding explanations makes the

model remarkably more robust. This is true across the vast majority of datasets and spurious cues,

as reflected by the accuracy drop δfacc(M,FT ) and the prediction-feature correlation corrf (M
FT
f ).

33See Appendix D.1 for implementation details.

102



101 102
40

60

80

100

Model Size (Billions of Parameters)

A
cc

ur
ac

y
Standard finetuning

Explanation-based finetuning

101 102
0

0.2

0.4

0.6

0.8

1

Model Size (Billions of Parameters)

P
re

di
ct

io
n-

Fe
at

ur
e

C
or

re
la

ti
on

Standard finetuning
Explanation-based finetuning

Figure 7.3: Accuracy (↑) and prediction-feature correlation (↓) across four GPT-3 models of different
sizes (Ada 2.7B, Babbage 6.7B, Curie 13B, Davinci 175B). Accuracies and correlations are averaged
across all five cues and all four datasets for each model.

Across all datasets, adding explanations in finetuning mitigates the average accuracy drop for models

on the unskewed test set (by 1.2, 11.3, 15.4, and 6.5, respectively). This is especially pronounced for

CREAK and e-SNLI where we observe an average accuracy drop of -15.1 and -20.3 respectively in

standard finetuning, but only -3.8 and -4.9 in explanation-based finetuning.

Since adding explanations incurs a small accuracy penalty in the no cue condition, its benefits in

terms of absolute accuracy is not always clear across all datasets. On ComVE, standard finetuning

outperforms our method by 0.2. On CREAK, e-SNLI, and SBIC, our method outperforms standard

finetuning by an average of 12.1, 13.0, and 2.5, respectively. Still, this represents an average accuracy

gain of 6.9 across all datasets.

In terms of prediction-feature correlation, our method consistently results in a lower average

correlation compared to standard finetuning (-0.045, -0.309, -0.315, and -0.202, on all datasets

respectively). Averaging across datasets, the prediction-feature correlation for standard finetuning is

0.384, while for explanation-based finetuning it is only 0.167 (-0.217). This suggests that explanation-

based finetuning makes models rely less on spurious cues.

Overall, there is strong evidence to support that including explanations during finetuning can make

LLMs more robust to spurious correlations.
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7.6. Analysis

Having shown the effectiveness of our method, we now analyze potential factors that may influence

its performance by answering the following questions:

7.6.1. Do explanations improve the robustness of models of different sizes and families?

We run the experiments in Section 7.5 with three smaller GPT-3 models (Ada, Babbage and Curie),

T5, BART and OPT. Full results for all models are given in Appendix D.2.

Figure 7.3 shows the results for the four GPT-3 models averaged across all cues and all datasets.

Overall, explanations can still improve the robustness of all four models, though to a lesser extent

for smaller ones. For GPT-3 Ada, for example, the absolute accuracy gain from explanation-based

finetuning over standard finetuning averaged across all datasets and cues is 1.78, as opposed to 6.85

for Davinci. As for the average prediction-feature correlation, including explanations in finetuning

reduces the correlation by 0.122 (0.728 → 0.606) for Ada, which is smaller than the reduction for

Davinci (0.217).

Interestingly, when no spurious cue is introduced, adding explanations substantially decreases smaller

models’ accuracy across all datasets (e.g., by an average of 13.2 for Ada). For Davinci, this average

drop is only 1.75, smaller but still non-zero. This suggests that it is more challenging for smaller

models to generate good explanations, so the accuracy penalty from explanation-based finetuning is

more severe. By contrast, larger models benefit more from our method. This is likely due to their

capability of producing higher-quality explanations.

Observing the full results for all models from Appendix D.2, we see that our method lowers the

prediction-feature correlation across all model families studied (GPT-3, OPT, BART, and T5) but

only improves absolute accuracy for all four GPT-3 models and OPT. This may also be due to scale

since the BART (110M) and T5 (220M) base models we experiment with are notably smaller than

the OPT (1.3b) model and the smallest GPT-3 model (2.7b). Interestingly, while our method yields

the greatest gains for Davinci (175B), Curie still experiences 95% of the accuracy gains we see in

Davinci, despite being less than a tenth of Davinci’s size. These results suggest that our method can
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be useful for other open-source models, many of which are in a similar size range.

7.6.2. How does the spurious correlation strength affect our method?
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Figure 7.4: Accuracy (↑) and prediction-feature correlation (↓) of GPT-3 (Davinci) on e-SNLI, as
the strength of the “embedding cluster” spurious correlation varies.

The strength of the spurious correlation in our skewed training set is maximum for the main

experiments presented in Section 7.3.1. This means that the cue is perfectly correlated with the label

(MCC=1.0). Here, we analyze how our method works with different levels of spurious correlation

strength in the training set. We select e-SNLI and the embedding cluster cue as a case study. Note

that in the main experiments with MCC=1.0, we only sample positive-labeled examples from the

pool of examples with the feature present (L1, f+) and negative-labeled examples from examples

with the feature absent(L0, f−). Here, we vary the level of correlation by introducing a certain

number of negative-labeled examples containing the feature (L0, f+) and positive-labeled examples

not containing the feature (L1, f−) into the training set.

As shown in Table 7.2, standard finetuning for e-SNLI outperforms explanation-based finetuning by

2.4 in terms of accuracy under the “no cue” condition, where the correlation between the label and

the embedding cluster feature is near zero.

When the correlation becomes 1.0, this difference is 18.6 in favor of explanation-based finetuning.

The “no cue” and perfect correlation conditions represent two extreme cases.

We show the results with different levels of spurious correlation strength in Figure 7.4, in terms of
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CREAK e-SNLI
Standard Explain Permute Standard Explain Permute

Accuracy
(δacc)

No Cue 84.2 85.0 86.2 91.6 89.2 90.0

Sentence Length 60.4
(-23.8)

80.2
(-4.8)

67.6
(-18.6)

69.8
(-21.8)

76.2
(-13.0)

72.2
(-17.8)

Present Tense 74.6
(-9.6)

80.2
(-4.8)

75.4
(-10.8)

85.8
(-5.8)

88.0
(-1.2)

80.2
(-9.8)

Embedding Cluster 69.2
(-15.0)

78.6
(-6.4)

74.8
(-11.4)

70.6
(-21.0)

88.6
(-0.6)

77.4
(-12.6)

Average 68.1
(-16.1)

79.7
(-5.3)

72.6
(-13.6)

75.4
(-16.2)

84.3
(-4.9)

76.6
(-13.4)

Prediction-
Feature
Correlation

Sentence Length 0.847 0.325 0.457 0.467 0.291 0.382
Present Tense 0.305 0.146 0.319 0.217 0.143 0.322
Embedding Cluster 0.563 0.288 -0.427 0.595 0.141 -0.303
Average 0.572 0.253 0.116 0.426 0.192 0.134

Table 7.3: Results on CREAK and e-SNLI when explanations are permuted to be completely
irrelevant to the input, in comparison with standard finetuning and explanation-based finetuning
(with valid explanations).

accuracy and prediction-feature correlation.

We observe that explanation-based finetuning starts to perform better than standard finetuning

when the correlation between the spurious cue and the target feature is above 0.8.

7.6.3. Does explanation quality affect the effectiveness of our method?

In the in-context learning scenario, Lampinen et al. (2022b) show that explanations can improve task

performance when used in few-shot prompting. Specifically, they find that high-quality explanations

that are manually selected provide substantially more gains than explanations that are not filtered

for quality.

To analyze the impact of explanation quality in our setting, we intentionally lower the quality of

explanations provided during finetuning by making them irrelevant to the input. We do this via

in-label permutation on all explanations: for any given instance in the training set, the explanation

for its label will be replaced with the explanation from another instance with the same label. In

other words, the new explanation does not apparently conflict with the label but is irrelevant to the

input.

We experiment with datasets where explanation-based finetuning shows the largest benefits (CREAK

and e-SNLI). The results are shown in Table 7.3. Surprisingly, even with permuted explanations,
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Figure 7.5: Results for finetuning with bootstrapped explanations (Explain (Bootstrap)), in
comparison to finetuning without explanations (Standard) and finetuning with human-written
explanations (Explain (Human)).

our method still provides a benefit over having no explanations at all. Averaging over all spurious

cues and both datasets, the accuracy gain from using permuted explanations compared to having no

explanations is 2.85. Naturally though, this is much smaller than the accuracy gain from using the

non-permuted explanations (10.25).

These results can be compared with the findings from Wang et al. (2022a) which show the central

role of explanation relevance in the few-shot setting. To understand why permuted explanations still

help in our case, since our data contains spurious cues, we hypothesize that the model might be

“distracted” by the explanations even if they are irrelevant, and could thus “forget” the spurious cues.

We leave it for future work to verify this hypothesis.
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7.6.4. Do the explanations have to be human-written?

All four datasets used in our main experiments have large-scale human-written explanations, while

the vast majority of datasets in the real world do not. In this analysis, we investigate the possibility

of using LM-generated explanations instead of human-written ones, to see if it is possible to generalize

our method to datasets for which human explanations are not available.

We also use the CREAK and e-SNLI datasets in this experiment as a case study. We prompt

GPT-3 (Davinci) in a 10-shot setting to generate an explanation for a given input. We do this via

a bootstrapping process that starts with 10 labeled training instances which we then grow in an

iterative fashion to add explanations to examples in the training set without explanations. The four

step process is as follows: (1) we initialize the seed set with 10 training instances, including the label

and the human-written explanation; (2) we sample 10 instances without replacement from the seed

set, and prompt the model to generate an explanation for a new instance from the training set; (3)

we add the new instance with the generated explanation to the seed set; (4) we repeat steps (2)-(3)

until the entire training set contains explanations. Note that when generating the explanation, we

give the model access to the ground-truth label. The temperature is set to 0.9 to facilitate diverse

completions.

Results obtained with these explanations generated via bootstrapping are shown in Figure 7.5a

and Figure 7.5c for CREAK and in Figure 7.5b and Figure 7.5d for e-SNLI. On average, finetuning

with bootstrapped explanations results in an accuracy gain of 8.3 for CREAK and 10.1 for e-SNLI,

compared to standard finetuning without any explanations. Although these improvements are

slightly lower than those obtained with human-written explanations (10.0 for CREAK and 13.1

for e-SNLI), they are nevertheless substantial. Inspecting the prediction-feature correlation for

CREAK, bootstrapped explanations induce an average correlation drop of 0.347 compared to standard

finetuning, surprisingly surpassing the drop achieved with human-written explanations (0.308). In

the case of e-SNLI, the prediction-feature correlation drops by an average of 0.223 for bootstrapped

explanations which, despite not being as substantial as with human-crafted explanations (0.316),

is still a significant improvement. These results indicate that explanation-based finetuning can be
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beneficial for datasets without human-provided explanations, and illustrate the generalizability and

applicability of our approach to more datasets.

7.7. Conclusion

In this chapter, we studied whether incorporating explanations as training signals can help reduce

model reliance on spurious cues in the data, to demonstrate the utility of explanations during

finetuning.

Specifically, in addition to predicting a label, models are finetuned to also generate a free-text

explanation in support of its prediction. We perform experiments on a diverse set of classification

tasks involving different types of spurious features. Results show that our method makes the

models substantially more robust towards spurious features, as measured by both accuracy and

correlation-based metrics. The efficacy of our method generalizes to different model sizes and families,

though larger models tend to benefit more. Moreover, we observe that the stronger the spurious

correlation in the data, the more helpful our method is. Interestingly, we show that highly relevant

explanations are not absolutely necessary, since permuted explanations still provide around 25%

of the accuracy benefits observed with non-permuted explanations. What is most notable is that

even with model-generated explanations, our method works almost as well as with human-written

ones, implying its potential applicability to the vast majority of datasets for which human-written

explanations are not available.

We note a few key limitations of our approach. Similar to what was shown by previous interpretability

studies (Camburu et al., 2018a, i.a.), incorporating explanations comes with some penalty on in-

distribution accuracy when there is no spurious cue. This penalty decreases as model size increases,

potentially because it is less challenging for larger models to generate good explanations. The second

limitation is that our artificially constructed training set may not reflect the strength of the studied

spurious cues in the real world. In our main experiments, we focus on the case where one spurious

cue is perfectly correlated with the target label. For further exploration, we can study the alternative

setting where there are multiple weak spurious cues instead of a single strong one. Finally, our

work here is limited by the scope of the experiments. We only experiment with generative LMs and
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binary classification tasks. Also, because of resource constraints, we only consider four datasets and

eight types of spurious cues (including dataset-independent and dataset-specific ones). Additional

experiments using a wider variety of spurious cues and datasets would help to shed light on how our

method generalizes to other scenarios.

This chapter further solidifies the utility of explanations by focusing on their potential to improve

robustness during the finetuning process. Previously, we have studied the utility of explanations

during in-context learning, towards calibration (Chapter 5) and self-correction (Chapter 6). The

findings from this chapter contribute to the broader theme of this thesis by showing that explanations

are useful in helping mitigate the reliance of LLMs on spurious cues, thereby enhancing their

robustness. This insight is particularly valuable for developing more reliable and trustworthy AI

systems, which are less likely to be misled by irrelevant features in the data. The observation

that model-generated explanations can be nearly as effective as human-written ones opens up

possibilities for applying this method to a wide range of datasets without the need for extensive

human annotation.

Looking ahead, the next chapter will conclude our exploration by reflecting on the cumulative

findings of this thesis. We will discuss the key takeaways on enhancing the faithfulness and utility of

LLM-generated explanations, and outline potential directions for future research.
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CHAPTER 8

Conclusion and Future Research

8.1. Conclusion

This thesis set out to address the challenges in explanations generated by LLMs, with a focus

on faithfulness and utility. We started by discussing the development of LLMs, the notion of

explainability in NLP, and their intersection — LLM-generated explanations. We contextualized this

line of work in a taxonomy of model explanation methods in NLP, as a type of “self-explanations”. We

then identified two critical gaps in existing studies along this line – faithfulness (explanations should

accurately reflect the model’s reasoning mechanism behind the prediction) and utility (explanations

should be helpful towards achieving pre-defined goals in real-world applications). To address the

first gap, we proposed a two-stage reasoning framework called Faithful CoT, integrating stochastic

Translation and symbolic Problem Solving. To address the second gap, we demonstrated the

practical utility of explanations during in-context learning and finetuning, towards enhancing LLMs’

capabilities in calibration, robustness, and potentially self-correction. Notably, we highlight several

key takeaways:

LLM-generated explanations are not faithful or useful by default. LLMs possess an

impressive ability to generate plausible-looking text after being trained on extensive datasets. These

generated explanations often appear convincing, which can lead to a false sense of trust in their

predictions. However, as discussed in Chapter 2.3, these explanations are not necessarily faithful.

LLMs can “lie” about their reasoning, rationalizing their predictions with explanations that do

not reflect the actual biases used in prediction. Furthermore, explanations are not trivially useful.

When used without careful consideration, they can be either useless or even adversarially helpful,

particularly in collaborative decision-making scenarios. Therefore, it is crucial not to blindly trust

LLM-generated explanations as transparent windows into model behavior and to be cautious about

claims of “self-interpretability”.

Integrating symbolic structures can enhance the faithfulness of LLM-generated expla-
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nations. The auto-regressive nature of the generation process in LLMs means there is no intrinsic

constraint linking the final prediction with the explanation. As a result, the reasoning described in

the explanation may differ entirely from the process used to generate the prediction. To mitigate

this issue, we introduced symbolic structures to constrain the prediction derivation process. By

deterministically deriving the prediction through the execution of a symbolic reasoning chain, we

ensure that the explanation faithfully represents how the answer is arrived at. This approach guaran-

tees faithfulness and, as demonstrated through various reasoning tasks, also improves performance,

showcasing the synergy between faithfulness and accuracy.

When used as an exposure interface or training signals, LLM-generated explanations

can be helpful for model improvement in different scenarios. During in-context learning,

explanations are helpful as an interface for the model to explicitly verbalize its thought process,

allowing humans or the model itself to inspect and improve on its outputs. Prompting LLMs to

produce explanations improves their calibration, with larger models benefiting more significantly. This

method also holds potential for enhancing self-correction capabilities, although further improvements

in critiquing and editing stages are necessary. During finetuning, incorporating explanations as

training signals guides models towards relevant features, reducing reliance on spurious correlations

in the dataset. This practice enhances robustness, as models forced to articulate explanations before

making predictions are less likely to depend on irrelevant features.

While faithfulness sometimes enhances utility, this relationship is not straightforward.

Intuitively, one might expect that faithful explanations would improve utility, but our findings

indicate mixed evidence. In Chapter 5, we observed that faithful explanations improve calibration for

instruction-tuned models, while unfaithful explanations are preferred for other models. In Chapter

6, different types of explanations showed similar levels of efficacy in self-correction. The factors

determining the relationship between faithfulness and utility remain unclear, indicating a need for

further research to understand this dynamic fully.

In conclusion, this thesis has made significant strides in addressing the challenges of faithfulness and

utility in LLM-generated explanations. By proposing novel frameworks and demonstrating practical
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applications, we have contributed to the growing body of knowledge in this field. However, our

findings also underscore the complexity of these issues and the need for continued research to fully

understand and leverage the potential of LLM-generated explanations in various applications.

For future work, I aim to further push the limits of the broader concept of Explainable AI (XAI),

specifically in two directions: controllability and human-centeredness. The subsequent sections

in this chapter will detail each direction.

8.2. Controllable Knowledge Adaptation with Symbolic Representation

In conventional end-to-end LM workflows, we frequently encounter challenges such as (a) how to

determine when to utilize parametric knowledge versus in-context knowledge (like that provided

by Retrieval-Augmented Generation or RAG), particularly when conflicts arise between the two;

(b) how to generalize to new Domain-Specific Languages (DSL) or unfamiliar tools; and (c) how to

unlearn sensitive or undesired information that has been accidentally learned by the model.

In Chapter 4, we introduced Faithful CoT, a method that decomposes complex tasks into Translation

(with end-to-end LMs) and Problem Solving (with symbolic reasoners). While this approach proved

effective, our experiments were limited to one-off generation without ongoing interaction.

XFUTURE WORK

$Input Output

LM

Symbolic Knowledge Base

retrieves updates
Tool specification

Factual knowledge

DSL grammar

Figure 8.1: A illustration of an end-to-end LM integrated with an external symbolic “Knowledge
Base” (KB), which can contain factual knowledge, Domain-Specific Language (DSL) grammars, tool
specifications, and so on.
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Building upon this foundation, a broader notion is to decouple knowledge and reasoning in LMs.

This decoupling can be achieved by integrating a generalized symbolic “Knowledge Base” (KB) with

the LM, as shown in Figure 8.1. This KB can encompass factual knowledge, DSL grammars, tool

specifications, and more. By allowing the LM to retrieve from and update this KB, we can address

the aforementioned challenges more effectively. For example, when new information is introduced in

context, we can explicitly check for and resolve conflicts with existing facts in the KB. Meanwhile,

transitioning between different DSLs becomes a matter of swapping the KB from one set of grammars

to another. Finally, the removal of sensitive information can be accomplished by simple deletion of

the relevant facts in the KB.

By explicitly materializing and controlling LM knowledge through a symbolic external KB, we can

enhance the reliability and adaptability of XAI systems.

8.3. Human-Centered Evaluation and Application of XAI Systems

In Chapter 5 through 7, we demonstrated the utility of explanations for model improvement during

finetuning and in-context learning stages, enhancing model robustness and calibration. Still, the

application of XAI systems in real-world scenarios involving human interaction, such as model

debugging, auditing, or collaborative decision-making, remains under-explored. While XAI promises

to be beneficial in these contexts, real-world implementations often fall short of expectations. For

instance, Bansal et al. (2021) found in a user study that the mere presence of an explanation,

regardless of its content, can result in over-reliance on AI decisions. This highlights a critical gap

between the theoretical potential of XAI and its practical efficacy. To address this discrepancy, we

argue that the design and evaluation of XAI systems should be grounded in specific use cases. This

necessitates a human-centered evaluation framework comprising two key components:

• More benchmarks for utility evaluation across diverse use cases, including debugging,

auditing, collaborative decision-making, knowledge discovery, and so on. While real user

feedback is ideal, its lack of scalability presents challenges. Alternative methods, such as

simulated user feedback in Chen et al. (2023a), may offer a viable solution.
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• Standardized evaluation constructs that go beyond assessing mere plausibility (how

convincing the explanation is to humans) to measure utility (how useful the explanation is

for the target goal). For instance, in collaborative decision-making scenarios, metrics such as

decision accuracy, speed, and the rate of decision changes could provide valuable insights.

Furthermore, the application of XAI systems should prioritize generalization. It is important to

assess the system’s utility across varied populations, locations, and settings, and evaluate its capacity

to provide insights for both observed and counterfactual scenarios. By adopting this human-centered

approach to both evaluation and application, we can bridge the gap between XAI’s theoretical

promise and its practical impact, fostering the development of truly useful and reliable XAI systems.
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APPENDIX A

APPENDIX FOR CHAPTER 4

A.1. Empirical Comparison with Concurrent Work

Two pieces of concurrent work, Program of Thoughts (PoT) (Chen et al., 2022b) and Program-Aided

Language Models (PAL) (Gao et al., 2022), were announced on arXiv within three months of our

work. Essentially, they both generate Python programs, or SL-only reasoning chains, to derive

the answer. Our approach differs from them mainly in the additional component of structured NL

comments, which decomposes the original problem into simpler, inter-dependent subproblems.

We perform an empirical performance comparison with them on the same set of 10 datasets used in

our main evaluation. Since both papers have only tackled math reasoning and symbolic reasoning

tasks, we reimplement their methods by using the “noNL” prompt in our ablation study from

Section 4.4. The comparison is done with code-davinci-002 as the underlying LM and greedy

decoding.

As shown in Figure A.1, on 6 of the 10 datasets (including most MWP datasets, SayCan, and Date

Understanding), PAL/PoT and Faithful CoT have very close accuracy (<2.0 difference). On AQuA,

PAL/PoT is visibly better. On the remaining three datasets (StrategyQA, Sports Understanding,

and CLUTRR), Faithful CoT reasonably outperforms PAL/PoT. This may suggest that our method

has an advantage when the task requires extensive external knowledge (e.g., StrategyQA and Sports

Understanding) or when the SL is not frequent in the LM’s pretraining data (e.g., Datalog, or our

self-defined relational expressions).

Finally, note that the key contribution of our method lies in interpretability. Though the addition of

structured NL comments sometimes does not make a difference in performance, it does make the

reasoning chain more understandable to the user. Furthermore, it may even enable users without a

programming background to debug the model, by only interacting with the NL subproblems (e.g.,

adding/removing/editing a subproblem), which is worth further exploration in the future.
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Figure A.1: Accuracy of our method and two concurrent methods, Program of Thoughts (POT)
(Chen et al., 2022b) and Program-Aided Language Models (PAL) (Gao et al., 2022), on 10 reasoning
datasets.

A.2. Dataset Details

A.2.1. Statistics

We show the dataset details in Table A.1, including the statistics, the number of few-shot exemplars

used in the prompt, and example inputs and outputs.

In particular, we notice that in one of our baselines Wei et al. (2022b), the reported number of

exemplars used in the prompt is inconsistent between the main text (10) and the appendix (6). To

ensure fair comparison, we rerun the baseline with 10 exemplars for our results in Table 4.1, which

is what we use for our method.

A.2.2. URLs and Licenses

We use the same distribution of datasets following Wei et al. (2022b):

Math Word Problems

• GSM8K (Cobbe et al., 2021): https://github.com/openai/grade-school-math, MIT license:

https://github.com/openai/grade-school-math/blob/master/LICENSE.
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Domain Dataset #
Shot

#
Test

Example

Math
Word
Problems

GSM8K 8 1,319 Q: Natalia sold clips to 48 of her friends in April, and then she sold half as
many clips in May. How many clips did Natalia sell altogether in April and
May?
A: 72

SVAMP 8 1,000 Q: Each pack of dvds costs 76 dollars. If there is a discount of 25 dollars on
each pack. How much do you have to pay to buy each pack?
A: 51

MultiArith 8 600 Q: For Halloween Debby and her sister combined the candy they received.
Debby had 32 pieces of candy while her sister had 42. If they ate 35 pieces
the first night, how many pieces do they have left?
A: 39

ASDiv 8 2,096 Q: Seven red apples and two green apples are in the basket. How many
apples are in the basket?
A: 9

AQuA 8 254 Q: A car finishes a journey in 20 hours at the speed of 60 km/hr. If the
same distance is to be covered in 10 hours, how much speed does the car
gain?
A: “120 kmph”

Multi-
hop
QA

StrategyQA 6 2,290 Q: Did Aristotle use a laptop?
A: False

Date
Understanding

10 359 Q: Yesterday was April 30, 2021. What is the date tomorrow in MM/D-
D/YYYY?
A: “05/02/2021”

Sports
Understanding

10 977 Q: Is the following sentence plausible: “Lebron James hit the turnaround
jumper”?
A: True

Planning
SayCan 7 103 Q: Could you get me a drink with caffeine?

A: “1.find(redbull) 2.pick(redbull) 3.find(user) 4.put(redbull)
5.done().”

Logical
Inference

CLUTRR 8 1,042 Q: [Carlos] is [Clarence]’s brother. [Carlos] and his sister, [Annie], went
shopping. [Annie] asked her mom [Valerie] if she wanted anything, but
[Valerie] said no. How is [Valerie] related to [Clarence]?
A: “mother”

Table A.1: Datasets used for evaluation. “# Shot” stands for the number of few-shot examples in
the prompt (following Wei et al. (2022b)) and “# Test” stands for the number of test examples.

• SVAMP (Patel et al., 2021): https://github.com/arkilpatel/SVAMP, MIT license: https:

//github.com/arkilpatel/SVAMP/blob/main/LICENSE.

• MultiArith (Roy and Roth, 2015), license: CC BY 4.0.

• ASDiv (Miao et al., 2020): https://github.com/chaochun/nlu-asdiv-dataset.

• AQuA (Ling et al., 2017): https://github.com/deepmind/AQuA, license: https://github.com/

deepmind/AQuA/blob/master/LICENSE.

Multi-hop QA
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• StrategyQA (Geva et al., 2021): we use the open-domain setting (question-only set) from

(BIG-Bench collaboration, 2021): https://github.com/google/BIG-bench/tree/main/bigbench/

benchmark_tasks/strategyqa.

• Date Understanding and Sports Understanding from BIG-Bench (BIG-Bench collaboration,

2021): Apache License v.2: https://github.com/google/BIG-bench/blob/main/LICENSE.

Planning

• SayCan (Ahn et al., 2022): SayCan dataset can be accessed at https://say-can.github.io/

under CC BY 4.0 license.

Relational Reasoning

• CLUTRR (Sinha et al., 2019): https://github.com/facebookresearch/clutrr, license: https://

github.com/facebookresearch/clutrr/blob/main/LICENSE. We obtain the publicly distributed

version available at https://drive.google.com/file/d/1SEq_e1IVCDDzsBIBhoUQ5pOVH5kxRoZF/

view, specifically the data_089907f8 split.

We use all the above datasets for research purposes only, consistent with their intended use.

A.2.3. Data Cleaning

We perform manual cleaning on ASDiv, Date Understanding, Sports Understanding, and SayCan as

we discover a number of annotation issues. In our experiment, we rerun all baselines on our cleaned

version of the test sets. They are provided in our repository to assist future research.

Specifically, we clean each of the datasets as follows:

ASDiv: We start with the test set used by Wei et al. (2022b), which removes all questions with

float-valued and string-valued answers. However, in their released version, we notice an error in the

answer extraction step for questions with more than one value in the answer (e.g., “what is the width

and length of X?”, where the answer consists of two values). In their implementation, only the first

value is extracted as the ground truth answer, which is then compared against model outputs. This
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might artificially inflate the final accuracy. To fix this, we extract all values in the answer as a set

and compare model outputs against it.

Date Understanding: We find a number of wrong answers in the test set. For example, for the

question “Jane and John married on Jan 2, 1958. It is their 5-year anniversary today. What is the

date today in MM/DD/YYYY?”, the provided answer is “01/02/1961”, whereas the correct answer

should be “01/02/1963”. We manually correct these answers, and the resulting test set has the same

number of examples as the original one.

Sports Understanding: We notice a few ambiguities with the Sports Understanding dataset. For

instance, running out of bounds is illegal in many sports. The phrase "Domantas Sabonis ran out of

bounds" is labeled as implausible, however, Domantas Sabonis is a basketball player, and basketball

players can indeed run out of bounds on the court. We remove 8 questions with such action-based

ambiguities. Additionally, since the release of this dataset, a few new athletes have risen to fame

with identical names to those mentioned in the dataset. For example, the question "Chris Paul

struck out the side" is implausible, as the referenced “Chris Paul” is a famous basketball player.

However, “Chris Paul” is also the name of a new MLB baseball player, in which case this statement

is plausible. We remove 5 questions with such name-based ambiguities.

SayCan: We discover a few issues in the test set: (1) the environment setup (e.g., the list of objects,

the list of locations, and the initial location of each object) is not the same for all examples; (2)

the annotation of the ground truth answer is often incomplete (i.e., for a given task like “visit all

locations”, there exist many possible plans in terms of the order of locations visited, but not all

of them are included in the annotation); (3) there are ambiguous descriptions in certain queries,

for example, in “Could you get me something refreshing?”, it is unclear what drinks are considered

“refreshing”. For these questions, we complete the annotation whenever possible, and filter out the

rest. The resulting test set contains 103 examples out of the original 120.
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A.2.4. Dataset Splits

As stated in Section 4.2, we use the official splits whenever possible: training set for exemplar

selection, validation set for prompt tuning, and test set for evaluation. In cases where they are

available, we adopt the following strategies for each dataset:

GSM8K: it only has training and test sets. We form the validation set by randomly sampling 1,000

examples from the training set.

Other MWP datasets: for AQuA, we use the official training/validation/test split. For the other

datasets, only the test sets are used, since we have the same prompt for GSM8K and them.

Date Understanding and Sports Understanding: they only have test sets. We follow Wei et al.

(2022b) to select the same number of examples from the test set to form the few-shot prompt and

use the remaining examples as a new test set.

SayCan: Following Wei et al. (2022b), we manually write 7 few-shot exemplars, since no training

set is provided. We evaluate the models on our cleaned version of the test set, described in the

previous subsection.

CLUTRR: this dataset is split into multiple folds. There is a training fold with K ∈ {2, 3} (where

K is the number of intermediate steps required to reach the answer), and one test fold for each K

from 2 to 10. We construct the few-shot prompt using exemplars from the training fold, and test

our method on the concatenation of all test folds.

A.3. Error Analysis

To further investigate where our method still fails, we inspect 100 errors34 from model predictions

on each of the four datasets and manually annotate the error categories.
34To encourage sample diversity, we embed all the errors using text-davinci-002 and cluster the embeddings using

spectral clustering. This produces around 70 clusters of different sizes, from which we gather 100 samples using
importance sampling.
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A.3.1. StrategyQA

As mentioned in Section 4.3, Figure A.2 shows the error type distribution on a sample of 70 instances

from StrategyQA, where we specifically compare the cases where the prediction of CoT is correct

whereas ours is wrong.

Figure A.2: Error analysis for StrategyQA.

There are 8 error types, from most to least frequent:

Syntax (29%): these are syntax-related errors that result in an invalid Datalog program. For

example, the LM redefines a relation that is previously declared, uses an invalid string comparison

operation, generates an ungrounded variable in the answer definition, and so on. With further

pretraining on Datalog, we believe Codex is able to overcome these errors to a reasonable extent.

Infinite Loop (24%): the LM generates an infinite loop of subquestions, which are oftentimes rather

philosophical. For example, for the question “Are potatoes native to the European continent?”, the

LM generates a list of 40 subquestions (potentially more, if not truncated by the token limit):

1. Where are potatoes native to?

Potatoes are native to the Andes.

2. Which continent is the Andes in?

The Andes is in South America.

3. Which continent is South America in?
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South America is in the Americas.

4. Which continent is the Americas in?

The Americas is in the Western Hemisphere.

5. Which hemisphere is the Western Hemisphere in?

The Western Hemisphere is in the Earth.

6. Which continent is the Earth in?

The Earth is in the Solar System.

......

11. Which continent is the Universe in?

The Universe is in the Multiverse.

12. Which continent is the Multiverse in?

The Multiverse is in the Omniverse.

13. Which continent is the Omniverse in?

The Omniverse is in the Metaverse.

14. Which continent is the Metaverse in?

The Metaverse is in the Hyperverse.

......

39. Which continent is the Quattuordecaverse in?

The Quattuordecaverse is in the Quindecaverse.

40. Which continent is the Quindecaverse in?

We notice that this type of errors also happen if the prompt does not include Datalog code but just

the NL subquestions, but much less often.

Wrong Subquestions (17%): The LM generates an irrelevant subquestion to the original question.

For instance, given the question, “Would toast for a vegan have margarine instead of butter?”, one

subquestion that is generated is “What is the difference between a vegan and a vegetarian?”, which

does not help with reaching the final answer.

Wrong Reasoning (10%): The subquestions are correct, but the reasoning from the retrieved facts
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to the final answer is problematic. For example, to answer the question, “Do solo pianists require a

conductor?”, the model correctly generates the relevant subquestions and their respective answers:

1. What is the definition of a solo pianist?

A solo pianist is a pianist who performs alone.

2. What is the definition of a conductor?

A conductor is a person who leads an orchestra.

3. What is the definition of an orchestra?

An orchestra is a large instrumental ensemble that contains string, brass, woodwind, and

percussion instruments.

But in deriving the final answer, the reasoning is wrong: “Now, we derive the final answer: Do solo

pianists require a conductor? The answer is Yes only if a solo pianist is not a conductor.”

Wrong Knowledge (10%): the LM fails to retrieve the correct knowledge to answer the subquestions.

For example, given the original question “Is the largest city in New Mexico also known as Yootó?”,

the model correctly generates the subquestions “What is the largest city in New Mexico?” (answer:

Albuquerque) and “Is Albuquerque also known as Yootó?”. However, when answering the second

subquestion, it retrieves a wrong piece of knowledge (“Albuquerque is also known as Yootó.”, whereas

in reality, it should be “Santa Fe” that is known as Yootó).

Answer Definition (6%): In our prompt, we always derive the answer in the format of “The answer

is Yes only if ...”, which is followed by a Datalog rule containing conditions that should be satisfied

for the answer to be true. However, the LM sometimes generates this as “The answer is No only if

...”, which outputs the reversed answer.

Knowledge Representation (3%): The retrieved knowledge in NL is correct, but the representation

of it in Datalog is wrong. For example, for the piece of knowledge “The Lucy Show is not the same

TV series as JAG (TV series)”, the model represents it as follows:

.decl Same_TV_series(TV_series1:symbol, TV_series2:symbol)
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Same_TV_series("The Lucy Show", "JAG (TV series)").”

which actually means the reverse (they are the same).

Unknown (1%): There is a very small proportion of errors (1 out of 70) where we are unsure of the

cause. Specifically, we expect the solver to output True, but it outputs False instead.

A.3.2. Date Understanding

Figure A.3: Error analysis for Date Understanding. For a detailed description of the error categories,
see Section A.3.2.

Unlike GSM8K, we only have 69 errors out of the 359 test examples, so we annotate them all, as

shown in Figure A.3. The error categories for date understanding are similar to GSM8K, except that

we do not see any generation errors in the samples, but we see questions with ambiguous phrasing

allowing both the gold and predicted answers to be correct based on interpretation.

A.3.3. SayCan

Since SayCan only has 120 test examples and Faithful CoT produces 7 errors, we annotate all 7 of

them, as shown in Figure A.4. These 7 examples can be categorized into two types:

Additional Subgoals (64%): Cases where the model generated unnecessary subgoals in the

decomposition of the original task, leading the planner astray. This is illustrated by the request

“Clear the jalapeno chips off the counter”:

(:goal

(and
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Figure A.4: Error analysis for SayCan. For a detailed description of the error categories, see
Section A.3.3.

(not (at jalapeno-chips counter))

(not (at jalapeno-chips table))

(not (at jalapeno-chips trash))

(not (at jalapeno-chips bowl))

(not (at jalapeno-chips user))

)

)

Wrong Object (36%): Here the model generates the wrong object/object types in the goal. For

example, a request such as “I opened a pepsi earlier. How would you bring me an open can?” fails

because the model generates actions with water instead of Pepsi.

A.3.4. CLUTRR

For CLUTRR, we group all error cases by K, the number of steps in their gold reasoning chain, as

a proxy for problem complexity, and perform importance sampling on these groups to select 100

examples. Our annotation of these examples reveals 5 error categories, as shown in Figure A.5:

Inversed Relation (41%): This stands out as the majority of the errors. These errors are caused

by the reversal of directional relationships for the actors in the problem, i.e., predicting “mother” or

“nephew” when the answer is “daughter” or “uncle” respectively.

Wrong Relation (30%): Here the model extracts the relation incorrectly (not even the inverse).

For example, for the subquestion “How is [Donald] related to [Jason]?” with the correctly identified

support “[Jason] is father of their father”, the model produces relation(Donald, Jason) = son
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Figure A.5: Error analysis for CLUTRR. For a detailed description of the error categories, see
Section A.3.4.

when the correct relation should be “grandson”.

Nonexistent Relation (4%): The model hallucinates a non-existent relation (e.g. “adopted” for

daughter).

Wrong Path (12%): Here, the model does not generate a correct reasoning path from target entity

A to target entity B in the question.

Wrong Gold Label (13%): These are annotation errors in the CLUTRR dataset. In one example,

for the sentence, “[Gloria] asked her mother [Laura] if she could go outside and play with her friends.”,

the annotation says Laura is Gloria’s grandmother.

A.4. Prompts

Due to the space limit, we show one exemplar in the prompt for each dataset here. The full prompts

can be found in our repository.

Among all the MWP datasets, our prompt for AQuA is different from the rest, because the answers

are in a multiple-choice format instead of integers. To produce a multiple-choice answer, we take a

two-step approach by first producing a numerical answer in the same way as for the other math

datasets. Then, we perform an additional step of converting the numerical answer into an answer

choice by again prompting the language model to generate which answer choice is closest to the

previously produced numerical answer. An exemplar of this 2-step prompt is shown in Table A.2.
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Exemplar for AQuA

Step 1: Answer Prediction
# Question: In a flight of 600 km, an aircraft was slowed down due to bad weather. Its average speed for the
trip was reduced by 200 km/hr and the time of flight increased by 30 minutes. The duration of the flight is:

# Answer option: [’A)1 hour’, ’B)2 hours’, ’C)3 hours’, ’D)4 hours’, ’E)5 hours’]
# Write Python code to solve the following questions. Store your result as a variable named ’answer’.
# 1. What was the duration of the flight? (independent, support: ["The duration of the flight is"])
duration = Symbol(’duration’, positive=True)
# 2. What is the delay of the flight? (independent, support: ["the time of flight increased by 30 minutes"])
delay = 30 / 60
# 3. What was the total flight distance? (independent, support: ["In a flight of 600 km"])
total_distance = 600
# 4. What was the original speed? (depends on 1 and 3, support: ["External knowledge: speed is distance
over time"])
original_speed = total_distance / duration
# 5. What was the reduced speed? (depends on 1, 2, and 3, support: [])
reduced_speed = total_distance / (duration + delay)
# 6. What was the duration of the flight if the original speed was 200 km/hr faster than the reduced speed?
(depends on 4, 5, and 1, support: [])
solution = solve_it(original_speed - reduced_speed - 200, duration)
answer = solution[duration]

Step 2: Multiple Choice Conversion
# Question: In a flight of 600 km, an aircraft was slowed down due to bad weather. Its average speed for the
trip was reduced by 200 km/hr and the time of flight increased by 30 minutes. The duration of the flight is:

# Answer option: [’A)1 hour’, ’B)2 hours’, ’C)3 hours’, ’D)4 hours’, ’E)5 hours’]
# Prediction: 1.00000000000000
# Closest Option: A

Table A.2: An exemplar from our prompt for AQuA.

Exemplar for GSM8K, SVAMP, MultiArith, and ASDiv
# Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

# To answer this question, write a Python program to answer the following subquestions:
# 1. How many trees are there in the beginning? (independent, support: ["There are 15 trees"])
trees_begin = 15
# 2. How many trees are there in the end? (independent, support: ["there will be 21 trees"])
trees_end = 21
# 3. How many trees did the grove workers plant today? (depends on 1 and 2, support: [])
trees_today = trees_end - trees_begin
# 4. Final Answer: How many trees did the grove workers plant today? (depends on 3, support: [])
answer = trees_today

Table A.3: An exemplar from our prompt for GSM8K, SVAMP, MultiArith, and ASDiv.
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Exemplar for StrategyQA
// Q: Would a pear sink in water?

// To answer this question, we answer the following subquestions:
// 1. What is the density of a pear?
// The density of a pear is about 0.6g/cm3.
// 2. What is the density of water?
// Water has a density of 1g/cm3.

// Then, we represent these answers in Datalog:
// 1. The density of a pear is about 0.6g/cm3.
.decl Has_density(Object:symbol, Density:float)
Has_density("pear", 0.6).
// 2. Water has a density of 1g/cm3.
Has_density("water", 1).

// Now, we derive the final answer: Would a pear sink in water?
// The answer is Yes only if the density of a pear is more than the density of water.
.decl Answer()
Answer() :- Has_density("pear", density1), Has_density("water", density2), density1 > density2.
.output Answer

Table A.4: An exemplar from our prompt for StrategyQA.

Exemplar for Date Understanding
# Q: Yesterday was April 30, 2021. What is the date tomorrow in MM/DD/YYYY?

# To answer this question, we write a program to answer the following subquestions:
# import relevant packages
from datetime import date, time, datetime
from dateutil.relativedelta import relativedelta
# 1. What is the date yesterday? (independent, support: ["Yesterday was April 30, 2021"])
date_yesterday = date(2021,4,30)
# 2. What is the date today? (depends on 1, support: ["Yesterday was April 30, 2021"])
date_today = date_yesterday + relativedelta(days=1)
# 3. What is the date tomorrow? (depends on 2, support: [])
date_tomorrow = date_today + relativedelta(days=1)
# 4. Final Answer: What is the date tomorrow in MM/DD/YYYY? (depends on 3, support: [])
answer = date_tomorrow.strftime("%m/%d/%Y")

Table A.5: An exemplar from our prompt for Date Understanding.
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Exemplar for Sports Understanding
# Q: Is the following statement plausible? Sam Darnold passed the puck

# To answer this question, write a Python program to answer the following subquestions:
# 1. Sam Darnold is a player in which sport? (independent, support: ["Sam Darnold is an NFL Quarterback",
"NFL is the National Football League"])
player_sport = "football"
# 2. The phrase "passed the puck" implies playing which sport? (independent, support: ["Players pass the
puck in hockey"])
playing_sport = "hockey"
# 3. Is the following statement plausible? Sam Darnold passed the puck (depends on 1 and 2, support:
["Sam Darnold is an NFL Quarterback", "NFL is the National Football League", "Players pass the puck in
hockey"])
plausibility = (player_sport == playing_sport)
# 4. Is the following statement plausible? Sam Darnold passed the puck (depends on 3, support: [])
answer = int(plausibility)

Table A.6: An exemplar from our prompt for Sports Understanding.

Exemplar for SayCan
User query: Bring me something not sweet to eat.

Goal in PDDL:
(:goal

; I need to find a snack
(exists (?s - snack)

; it has to satisfy the following conditions
(and

; the snack must not be sweet
(not (is-sweet ?s))
; bring it to the user
(at ?s user)

)
)

)

Table A.7: An exemplar from our prompt for SayCan.

Exemplar for CLUTRR
# Context: [Jason] always had some great adventure planned for his granddaughter [Guillermina] when she
came to visit. So, naturally, when [Myrna] told her daughter [Guillermina] that they would be going to visit
[Jason] she could hardly contain herself.

# Question: How is [Jason] related to [Myrna]?
# To answer this question, we write a program to answer the following subquestions:
# 1. How is [Jason] related to [Guillermina]? (independent, support: "[Jason] always had some great
adventure planned for his granddaughter [Guillermina] when she came to visit.")
relation(Jason, Guillermina) = grandfather
# 2. How is [Guillermina] related to [Myrna]? (independent, support: "So, naturally, when [Myrna] told her
daughter [Guillermina] that they would be going to visit [Jason] she could hardly contain herself.")
relation(Guillermina, Myrna) = daughter
# 3. Final answer: How is [Jason] related to [Myrna]? (depends on 1, 2)
relation(Jason, Myrna) = relation(Jason, Guillermina) @ relation(Guillermina, Myrna)

Table A.8: An exemplar from our prompt for CLUTRR.
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APPENDIX B

APPENDIX FOR CHAPTER 5

B.1. Implementation Details

B.1.1. Closed-Source Models

We use OpenAI Codex (code-davinci-002, deprecated since Jan 4, 2024) (Chen et al., 2021), GPT-

3.5-turbo (gpt-3.5-turbo-16k-0613), and GPT-4 (gpt-4-0613) (OpenAI, 2023) through the Python

API available at platform.openai.com, from Oct, 2023 to Feb, 2024. The inference cost per input

query (with 40 samples of all five prompting strategies) is $0 for all Codex models through the

researcher access program, $0.08 - $0.13 for GPT-3.5-turbo, and $0.61 - $0.99 for GPT-4, depending

on the dataset. The total cost of running inference on all 9 datasets is $0 for Codex, around $1,059

for GPT-3.5-turbo, and around $7,942 for GPT-4. The inference time on one input query (with 40

samples of all five prompting strategies) is 50 - 95 seconds with Codex under a rate limit of 150,000

tokens/minute, 39 - 74 seconds with GPT-3.5-turbo under 2,000,000 tokens/minute, and 83 - 157

seconds with GPT-4 under 300,000 tokens/minute, also depending on the dataset. The total time

for running inference on all 9 datasets is 8.3 days for Codex, 6.4 days for GPT-3.5-turbo, and 13.8

days for GPT-4.

We use the following hyper-parameters throughout all experiments:

• temperature: 0.0 for greedy decoding, 0.4 for self-consistent decoding;

• max_tokens: 1000;

• n: 1 for greedy decoding, 40 for self-consistent decoding;

• frequency_penalty: 0;

• presence_penalty: 0.

Any unspecified hyper-parameters are set to the default value on https://platform.openai.com/docs/
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api-reference/completions/create and https://platform.openai.com/docs/api-reference/chat.

B.1.2. Open-Source Models

We use LLaMA (7B/13B/70B) (Touvron et al., 2023) and Mistral (7B/7B-instruct) (Jiang et al.,

2023) as the open-source models in our experiments. We used Nvidia A100 80GB GPUs to generate

output for all open-source models. The LLaMA-70B model used 2 GPUs for each inference, while

all other models used a single A100 GPU. The checkpoints and tokenizers were loaded from their

respective official repositories on HuggingFace (meta-llama for LLaMA models and mistralai for

Mistral models). The hyperparameters were kept the same as in the closed-source models for a fair

comparison. On average, each inference took less than a second for the standard strategy, 3-4 seconds

for CoT and LtM, and 5-6 seconds for FCoT and PoT for all 7B models (LLaMA-7B, Mistral-7B,

and Mistral-7B-instruct). The LLaMA-13B took 1.5 times longer on average and the LLaMA-70B

took 4 times longer on average. In terms of GPU hours (Nvidia A100 80GB), the LLaMA-7B,

Mistral-7B, and Mistral-7B-instruct models took about 9 hours for LtM and CoT strategies, 4.5

hours for Standard, and 13 hours for PoT and FCoT strategies. In total, it took approximately 50

hours for each of the LLaMA-7B, Mistral-7B, and Mistral-7B-instruct models to run experiments for

all strategies across all datasets. For LLaMA-13B it took about 75 hours and for LLaMA-70B about

200 hours. Due to the formidable computation cost of up to 425 hours, we have not finished running

all baselines for open-source models yet.

B.2. Comparing Consistency Merics

B.3. Additional Results

B.3.1. Comparing Consistency Merics

Table B.1 compares the efficacy of three consistency metrics in terms of Brier Score averaged over

all datasets and prompting strategies, with significance level. We can observe that Codex and all

open-source models prefer agreement as the best or second-best (not significantly different from the

best) consistency measure. GPT-3.5-turbo and GPT-4 prefer entropy and FSD, which have the

same performance considering statistical significance (p ≥ 0.05).

132

https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/chat


LM Consistency Metrics
entropy agree FSD

Codex .175† .151 .159†
GPT-3.5-turbo .205 .221† .207
GPT-4 .116 .119† .114
LLaMA-7B .241† .232 .235†
LLaMA-13B .222† .204 .211†
LLaMA-70B .182† .154 .165†
Mistral-7B .205† .183 .191†
Mistral-7B-
instruct

.220† .216 .215

Table B.1: Overall Brier Score (↓) of three consistency metrics averaged across all datasets and
prompting strategies. † indicates that the current metric is significantly worse (p < 0.05) than the
best-performing metric (in bold).

Figure B.1: ECE score (↓) for each prompting strategy, averaged across all datasets and consistency
metrics.

B.3.2. Calibration Results on All Datasets

Table B.2 and Table B.3 compare the Brier Score of all calibration methods for closed-source and

open-source models on all 9 datasets.

B.3.3. ECE results

In addition to Brier Score, we also evaluate the calibration methods with Expected Calibration Error

(ECE) (Guo et al., 2017).

Table B.4, B.5 and Figure B.1 show the ECE of all calibration methods for all models on all domains.

We can observe that they exhibit similar trends as the Brier Score.
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Dataset Consistency Metrics Baselines
entropy agreement FSD verbling verbpercent logit ptrue0-shotptrue8-shot

LM: Codex
ASDiv .099 .090 .095 .205 .190 .150 .159 .120
GSM8K .189 .158 .177 .252 .377 .262 .248 .188
Multi .103 .085 .089 .187 .162 .135 .106 .117
SVAMP .126 .103 .114 .193 .173 .139 .145 .148
Sport .071 .068 .062 .346 .075 .067 .103 .200
Date .174 .159 .162 .210 .251 .219 .191 .197
StrategyQA .353 .213 .256 .305 .316 .257 .271 .220
CLUTRR .288 .369 .327 .296 .536 .506 .330 .232
SayCan .175 .115 .152 .243 .159 .145 .135 .190
average .175 .151 .159 .249 .249 .209 .188 .179

LM: GPT-3.5-turbo
ASDiv .194 .224 .194 .223 .213 n/a n/a n/a
GSM8K .184 .196 .183 .260 .338 n/a n/a n/a
MultiArith .044 .041 .039 .101 .065 n/a n/a n/a
SVAMP .108 .115 .108 .164 .155 n/a n/a n/a
Sport .089 .101 .095 .326 .151 n/a n/a n/a
Date .266 .292 .280 .316 .348 n/a n/a n/a
StrategyQA .393 .411 .376 .329 .342 n/a n/a n/a
CLUTRR .429 .482 .465 .450 .509 n/a n/a n/a
SayCan .137 .126 .126 .267 .341 n/a n/a n/a
average .205 .221 .207 .271 .273 n/a n/a n/a

LM: GPT-4
ASDiv .090 .103 .090 .091 .095 n/a n/a n/a
GSM8K .083 .099 .087 .132 .144 n/a n/a n/a
MultiArith .013 .010 .011 .015 .013 n/a n/a n/a
SVAMP .047 .050 .047 .058 .063 n/a n/a n/a
Sport .033 .031 .031 .160 .100 n/a n/a n/a
Date .063 .069 .061 .073 .076 n/a n/a n/a
StrategyQA .230 .205 .207 .195 .220 n/a n/a n/a
CLUTRR .392 .443 .416 .386 .435 n/a n/a n/a
SayCan .092 .065 .079 .279 .481 n/a n/a n/a
average .116 .119 .114 .154 .181 n/a n/a n/a

Table B.2: Brier Score (↓) for closed-source LMs on all datasets, averaged across five prompting
strategies. The best scores are in bold.
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Domain Consistency Metrics Baselines
entropy agree FSD logit

LM: LLaMA-7B
ASDiv .164 .155 .158 .411
GSM8K .137 .166 .148 .713
MultiArith .232 .231 .241 .544
SVAMP .211 .195 .211 .455
Sport .260 .221 .232 .272
Date .216 .267 .235 .526
StrategyQA .390 .265 .301 .408
CLUTRR .290 .370 .323 .633
SayCan .267 .214 .269 .307
average .241 .232 .235 .474

LM: LLaMA-13B
ASDiv .144 .135 .136 .334
GSM8K .177 .179 .181 .591
MultiArith .232 .198 .222 .395
SVAMP .205 .180 .200 .365
Sport .170 .153 .151 .194
Date .181 .206 .185 .402
StrategyQA .383 .241 .285 .371
CLUTRR .298 .353 .320 .596
SayCan .209 .190 .220 .250
average .222 .204 .211 .389

LM: LLaMA-70B
ASDiv .107 .099 .101 .209
GSM8K .201 .168 .187 .375
MultiArith .134 .108 .113 .188
SVAMP .145 .112 .129 .183
Sport .053 .041 .044 .046
Date .167 .166 .168 .262
StrategyQA .338 .192 .239 .289
CLUTRR .287 .347 .309 .534
SayCan .206 .156 .191 .179
average .182 .154 .165 .252

LM: Mistral-7B
ASDiv .122 .112 .113 .269
GSM8K .197 .188 .196 .491
MultiArith .189 .160 .171 .320
SVAMP .176 .141 .162 .250
Sport .116 .085 .090 .109
Date .178 .202 .187 .373
StrategyQA .363 .239 .276 .343
CLUTRR .283 .334 .307 .555
SayCan .225 .186 .217 .207
average .205 .183 .191 .324

LM: Mistral-7B-instruct
ASDiv .130 .127 .124 .288
GSM8K .193 .191 .194 .508
MultiArith .191 .164 .180 .319
SVAMP .166 .147 .158 .274
Sport .207 .196 .194 .222
Date .220 .244 .227 .497
StrategyQA .334 .269 .284 .366
CLUTRR .306 .397 .347 .648
SayCan .228 .209 .229 .332
average .220 .216 .215 .384

Table B.3: Brier Score (↓) for closed-source LMs on all datasets, averaged across five prompting
strategies. The best scores are in bold.
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Domain Consistency Metrics Baselines
entropy agreement FSD verbling verbpercent logit ptrue0-shotptrue8-shot

LM: Codex
MWP .132 .077 .104 .237 .225 .156 .142 .108
MHQA .188 .090 .119 .272 .214 .152 n/a .167
Plan. .203 .101 .159 .322 .159 .106 .117 .248
Relation. .228 .368 .294 .214 .536 .512 .313 .175
average .169 .117 .136 .256 .249 .189 .166 .151

LM: GPT-3.5-turbo
MWP .118 .121 .115 .208 .193 n/a n/a n/a
MHQA .230 .246 .233 .321 .277 n/a n/a n/a
Plan. .154 .119 .128 .351 .357 n/a n/a n/a
Relation. .426 .505 .471 .449 .519 n/a n/a n/a
average .193 .205 .195 .289 .275 n/a n/a n/a

LM: GPT-4
MWP .056 .064 .055 .053 .079 n/a n/a n/a
MHQA .104 .089 .090 .139 .126 n/a n/a n/a
Plan. .109 .061 .084 .351 .484 n/a n/a n/a
Relation. .387 .454 .415 .381 .435 n/a n/a n/a
average .114 .115 .110 .151 .179 n/a n/a n/a

Table B.4: ECE score (↓) for closed-source LMs on four domains – Math Word Problems (MWP),
Multi-hop QA (MHQA), Planning (Plan.), and Relational Inference (Relation.) – averaged across
five prompting strategies. The best score is in bold.
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Domain Consistency Metrics Baselines
entropy agreement FSD logit

LM: LLaMA-7B
MWP .138 .130 .141 .548
MHQA .237 .189 .197 .400
Plan. .256 .164 .259 .302
Relation. .214 .359 .267 .641
average .192 .179 .187 .482

LM: LLaMA-13B
MWP .159 .117 .151 .428
MHQA .207 .142 .149 .319
Plan. .205 .147 .217 .244
Relation. .239 .334 .268 .602
average .189 .153 .170 .391

LM: LLaMA-70B
MWP .153 .083 .120 .233
MHQA .174 .082 .117 .193
Plan. .229 .156 .207 .172
Relation. .223 .333 .257 .539
average .176 .118 .144 .247

LM: Mistral-7B
MWP .165 .111 .138 .331
MHQA .184 .120 .135 .271
Plan. .260 .194 .231 .198
Relation. .207 .295 .245 .561
average .186 .144 .159 .322

LM: Mistral-7B-instruct
MWP .154 .108 .127 .349
MHQA .205 .191 .186 .355
Plan. .203 .155 .212 .328
Relation. .238 .402 .310 .659
average .186 .174 .177 .383

Table B.5: ECE score (↓) for all LMs on four domains – Math Word Problems (MWP), Multi-hop QA
(MHQA), Planning (Plan.), and Relational Inference (Relation.) – averaged across five prompting
strategies. The best score is in bold.
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Generation prompt exemplar (Answer-only)
# Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

A: The answer is 6.

Generation prompt exemplar (CoT)
# Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

A:
1. We start with 15 trees.
2. Later we have 21 trees.
3. The difference must be the number of trees they planted.
4. So, they must have planted 21 - 15 = 6 trees.
5. The answer is 6.

Generation prompt exemplar (PoT)
# Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

trees_begin = 15
trees_end = 21
trees_today = trees_end - trees_begin
answer = trees_today

Generation prompt exemplar (Faithful CoT)
# Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

# To answer this question, write a Python program to answer the following subquestions:
# 1. How many trees are there in the beginning? (independent, support: ["There are 15 trees"])

trees_begin = 15
# 2. How many trees are there in the end? (independent, support: ["there will be 21 trees"])
trees_end = 21
# 3. How many trees did the grove workers plant today? (depends on 1 and 2, support: [])
trees_today = trees_end - trees_begin
# 4. Final Answer: How many trees did the grove workers plant today? (depends on 3, support: [])
answer = trees_today

Table C.1: An exemplar from our Generation prompt for GSM8K, with different types of output.

APPENDIX C

APPENDIX FOR CHAPTER 6

C.1. Prompts

Our prompts for each self-correction stage can be found in Table C.1 to C.6. To save space, we only

show one exemplar in each prompt, but the full prompt contains 8 such exemplars in total.
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Discrimination prompt exemplar (Answer-only)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A: 128
Is the above answer correct? (Yes/No): No

Discrimination prompt exemplar (CoT)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A:
1. The width of the bathroom is 8 feet.
2. The owner wants to extend it by 2 feet on each side.
3. This means the new width will be 8 + 2 + 2 = 12 feet.
4. The area of the bathroom is 96 sq ft.
5. The new area will be 12 * 12 = 144 sq ft.
6. The answer is 144.
Answer: 144
Is the above answer correct? (Yes/No): No

Discrimination prompt exemplar (PoT)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A:
1. width_bathroom = 8
2. extension = 2
3. width_new = width_bathroom + extension * 2
4. area_bathroom = width_bathroom * width_bathroom
5. area_new = width_new * width_new
6. answer = area_new - area_bathroom
Execution result: 80
Is the above answer correct? (Yes/No): No

Discrimination prompt exemplar (Faithful CoT)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A: # To answer this question, write a Python program to answer the following subquestions:
# 1. What is the width of the bathroom? (independent, support: ["the width of the bathroom is 8 feet"])

width_bathroom = 8
# 2. How much does the owner want to extend the bathroom on each side? (independent, support: ["extend
it by 2 feet on each side"])
extension_each_side = 2
# 3. How much does the owner want to extend the bathroom in total? (depends on 2, support: [])
extension_total = extension_each_side * 2
# 4. What is the new width of the bathroom? (depends on 1 and 3, support: []) new_width_bathroom =
width_bathroom + extension_total
# 5. What is the size of the bathroom? (independent, support: ["The size of a bathroom is 96 sq ft"])
size_bathroom = 96
# 6. What is the length of the bathroom? (depends on 5, support: []) length_bathroom = size_bathroom /
width_bathroom
# 7. What is the new length of the bathroom? (depends on 6 and 3, support: [])
new_length_bathroom = length_bathroom + extension_total
# 8. What is the new area of the bathroom? (depends on 7 and 4, support: [])
new_area_bathroom = new_length_bathroom * new_width_bathroom
# 9. Final Answer: What is the new area of the bathroom? (depends on 8, support: [])
answer = new_area_bathroom
Execution result: 192
Is the above answer correct? (Yes/No): No

Table C.2: An exemplar from our Discrimination prompt for GSM8K, with different types of output.
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Critiquing prompt exemplar (Answer-only)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A: 128
Is the above answer correct? (Yes/No): No
What’s wrong with it? (Please explain): The correct answer should be 140.

Critiquing prompt exemplar (CoT)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A:
1. The width of the bathroom is 8 feet.
2. The owner wants to extend it by 2 feet on each side.
3. This means the new width will be 8 + 2 + 2 = 12 feet.
4. The area of the bathroom is 96 sq ft.
5. The new area will be 12 * 12 = 144 sq ft.
6. The answer is 144.
Answer: 144
Is the above answer correct? (Yes/No): No
What’s wrong with it? (Please explain): In Step 3, to "extend it by 2 feet on each side" means to extend the
width and length by 2 feet each. So it doesn’t make sense to add the extension twice to the width. Instead,
we should add the extension to the width and length separately, and then multiply the new width and new
length to get the area.

Table C.3: An exemplar from our Critiquing prompt for GSM8K, with different types of output (to
be continued).

140



Critiquing prompt exemplar (PoT)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A:
1. width_bathroom = 8
2. extension = 2
3. width_new = width_bathroom + extension * 2
4. area_bathroom = width_bathroom * width_bathroom
5. area_new = width_new * width_new
6. answer = area_new - area_bathroom
Execution result: 80
Is the above answer correct? (Yes/No): No
What’s wrong with it? (Please explain): In Step 3, it doesn’t make sense to add the extension twice to the
width. Instead, we should add the extension to the width and length separately, and then multiply the new
width and new length to get the area.

Critiquing prompt exemplar (Faithful CoT)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A: # To answer this question, write a Python program to answer the following subquestions:
# 1. What is the width of the bathroom? (independent, support: ["the width of the bathroom is 8 feet"])

width_bathroom = 8
# 2. How much does the owner want to extend the bathroom on each side? (independent, support: ["extend
it by 2 feet on each side"])
extension_each_side = 2
# 3. How much does the owner want to extend the bathroom in total? (depends on 2, support: [])
extension_total = extension_each_side * 2
# 4. What is the new width of the bathroom? (depends on 1 and 3, support: []) new_width_bathroom =
width_bathroom + extension_total
# 5. What is the size of the bathroom? (independent, support: ["The size of a bathroom is 96 sq ft"])
size_bathroom = 96
# 6. What is the length of the bathroom? (depends on 5, support: []) length_bathroom = size_bathroom /
width_bathroom
# 7. What is the new length of the bathroom? (depends on 6 and 3, support: [])
new_length_bathroom = length_bathroom + extension_total
# 8. What is the new area of the bathroom? (depends on 7 and 4, support: [])
new_area_bathroom = new_length_bathroom * new_width_bathroom
# 9. Final Answer: What is the new area of the bathroom? (depends on 8, support: [])
answer = new_area_bathroom
Execution result: 192
Is the above answer correct? (Yes/No): No
What’s wrong with it? (Please explain): In Step # 3, to "extend it by 2 feet on each side" means to extend
the width and length by 2 feet each. So it doesn’t make sense to compute the total extension. Instead, we
should add the extension to the width and length separately, and then multiply the new width and new
length to get the area.

Table C.4: An exemplar from our Critiquing prompt for GSM8K, with different types of output
(continued).
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Editing prompt exemplar (Answer-only)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A: 128
Is the above answer correct? (Yes/No): No
What’s wrong with it? (Please explain): The correct answer should be 140.

Editing prompt exemplar (CoT)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A:
1. The width of the bathroom is 8 feet.
2. The owner wants to extend it by 2 feet on each side.
3. This means the new width will be 8 + 2 + 2 = 12 feet.
4. The area of the bathroom is 96 sq ft.
5. The new area will be 12 * 12 = 144 sq ft.
6. The answer is 144.
Answer: 144
Is the above answer correct? (Yes/No): No
What’s wrong with it? (Please explain): In Step 3, to "extend it by 2 feet on each side" means to extend the
width and length by 2 feet each. So it doesn’t make sense to add the extension twice to the width. Instead,
we should add the extension to the width and length separately, and then multiply the new width and new
length to get the area.
Let’s edit the solution to fix the mistake:
1. The width of the bathroom is 8 feet.
2. The size of a bathroom is 96 sq ft, which means the length of the bathroom is 96 / 8 = 12 feet.
3. The owner wants to extend it by 2 feet on each side.
4. This means the new width will be 8 + 2 = 10 feet, and the new length will be 12 + 2 = 14 feet.
5. The new area will be 10 * 14 = 140 sq ft.
6. The answer is 140.

Editing prompt exemplar (PoT)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A:
1. width_bathroom = 8
2. extension = 2
3. width_new = width_bathroom + extension * 2
4. area_bathroom = width_bathroom * width_bathroom
5. area_new = width_new * width_new
6. answer = area_new - area_bathroom
Execution result: 80
Is the above answer correct? (Yes/No): No
What’s wrong with it? (Please explain): In Step 3, it doesn’t make sense to add the extension twice to the
width. Instead, we should add the extension to the width and length separately, and then multiply the new
width and new length to get the area.
Let’s edit the solution to fix the mistake:
1. width_bathroom = 8
2. area_bathroom = 96
3. length_bathroom = area_bathroom / width_bathroom
4. extension = 2
5. width_new = width_bathroom + extension
6. length_new = length_bathroom + extension
7. area_new = width_new * length_new
8. answer = area_new

Table C.5: An exemplar from our Editing prompt for GSM8K, with different types of output (to be
continued).
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Editing prompt exemplar (Faithful CoT)
# Q: The size of a bathroom is 96 sq ft. If the width of the bathroom is 8 feet and the owner wants to extend
it by 2 feet on each side, what is the new area of the bathroom?

A: # To answer this question, write a Python program to answer the following subquestions:
# 1. What is the width of the bathroom? (independent, support: ["the width of the bathroom is 8 feet"])

width_bathroom = 8
# 2. How much does the owner want to extend the bathroom on each side? (independent, support: ["extend
it by 2 feet on each side"])
extension_each_side = 2
# 3. How much does the owner want to extend the bathroom in total? (depends on 2, support: [])
extension_total = extension_each_side * 2
# 4. What is the new width of the bathroom? (depends on 1 and 3, support: []) new_width_bathroom =
width_bathroom + extension_total
# 5. What is the size of the bathroom? (independent, support: ["The size of a bathroom is 96 sq ft"])
size_bathroom = 96
# 6. What is the length of the bathroom? (depends on 5, support: []) length_bathroom = size_bathroom /
width_bathroom
# 7. What is the new length of the bathroom? (depends on 6 and 3, support: [])
new_length_bathroom = length_bathroom + extension_total
# 8. What is the new area of the bathroom? (depends on 7 and 4, support: [])
new_area_bathroom = new_length_bathroom * new_width_bathroom
# 9. Final Answer: What is the new area of the bathroom? (depends on 8, support: [])
answer = new_area_bathroom
Execution result: 192
Is the above answer correct? (Yes/No): No
What’s wrong with it? (Please explain): In Step # 3, to "extend it by 2 feet on each side" means to extend
the width and length by 2 feet each. So it doesn’t make sense to compute the total extension. Instead, we
should add the extension to the width and length separately, and then multiply the new width and new
length to get the area.
Let’s edit the solution to fix the mistake:
# 1. What is the width of the bathroom? (independent, support: ["the width of the bathroom is 8 feet"])
width_bathroom = 8
# 2. What is the size of the bathroom? (independent, support: ["The size of a bathroom is 96 sq ft"])
size_bathroom = 96
# 3. What is the length of the bathroom? (depends on 1 and 2, support: [])
length_bathroom = size_bathroom / width_bathroom
# 4. How much does the owner want to extend the bathroom on each side? (independent, support: ["extend
it by 2 feet on each side"])
extension_each_side = 2
# 5. What is the new width of the bathroom? (depends on 1 and 4, support: [])
new_width_bathroom = width_bathroom + extension_each_side
# 6. What is the new length of the bathroom? (depends on 3 and 4, support: [])
new_length_bathroom = length_bathroom + extension_each_side
# 7. What is the new area of the bathroom? (depends on 5 and 6, support: [])
new_area_bathroom = new_length_bathroom * new_width_bathroom
# 8. Final Answer: What is the new area of the bathroom? (depends on 7, support: [])
answer = new_area_bathroom

Table C.6: An exemplar from our Editing prompt for GSM8K, with different types of output
(continued).
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APPENDIX D

APPENDIX FOR CHAPTER 7

D.1. Implementation Details

D.1.1. Models and Hyper-parameters

OpenAI Models We finetuned GPT-3 (Brown et al., 2020b) from OpenAI’s standard API35 in

different sizes (Davinci and Ada). Its license is MIT license. The GPT-3 models are finetuned for

four epochs (default setting on the OpenAI API), and the other hyperparameters (e.g. learning

rates) are the default values. with the exception of the models trained with 4k examples which were

only trained for one epoch with an increased learning rate (0.2) to reduce costs.

Huggingface Models T5 (Raffel et al., 2020), BART (Lewis et al., 2020b), and OPT (Zhang et al.,

2022b) are implemented with HuggingFace Transformers36. The pretrained model checkpoints we use

are the t5-base (220M parameters), facebook/bart-base (110M parameters) and facebook/opt-1.3b

(1.3B parameters). Their licenses are Apache License 2.0 (T5 and BART) or other37 (OPT). We use

the conditional generation classes for T5 38 and BART 39, and use the auto model for causalLM

class for OPT 40 from Huggingface to finetune the pretrained models. To remain consistent with the

finetuning of OpenAI models, the T5 and BART models are finetuned with 1,000 training examples

and run for 4 training epochs. The batch size is set to 8 and the learning rate is set to 2e-5 with

the max sequence length being 128. The OPT model may take longer to converge, we consistently

use 1,000 training examples and set batch size to 8, but the standard finetuning on CREAK, and

the with-explanation finetuning on e-SNLI and ComVE run for six epochs, the learning rate of

the standard finetuning on CREAK and SBIC, and the with-explanation finetuning on ComVE is

set to 1e-5, the learning rate of the with-explanation finetuning on SBIC is set to 6e-5. For other
35https://beta.openai.com/docs/api-reference
36https://github.com/huggingface/transformers
37https://huggingface.co/facebook/opt-1.3b/blame/aa6ac1e23bb9a499be2b7400079cd2a7b8a1309a/LICENSE.md
38https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5ForConditionalGeneration
39https://huggingface.co/docs/transformers/model_doc/bart#transformers.BartForConditionalGeneration
40https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM
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ComVE CREAK e-SNLI SBIC
Standard Explain Standard Explain Standard Explain Standard Explain

Accuracy
(δacc)

No Cue 79.2 52.4 71.6 62.6 88.0 76.4 80.0 74.6

Sentence Length 44.8
(-34.4)

48.4
(-4.0)

53.0
(-18.6)

56.6
(-6.0)

60.4
(-27.6)

64.6
(-11.8)

53.6
(-26.4)

49.6
(-25.0)

Present Tense 53.2
(-26.0)

54.0
(1.6)

55.2
(-16.4)

55.8
(-6.8)

67.4
(-20.6)

69.6
(-6.8)

70.6
(-9.4)

75.2
(0.6)

Embedding Cluster 47.6
(-31.6)

48.4
(-4.0)

50.2
(-21.4)

51.8
(-10.8)

55.8
(-32.2)

58.0
(-18.4)

56.0
(-24.0)

55.0
(-19.6)

Plural Noun 51.8
(-27.4)

53.8
(1.4)

53.0
(-18.6)

53.8
(-8.8)

52.6
(-35.4)

58.4
(-18.0)

70.8
(-9.2)

71.8
(-2.8)

Average 49.4
(-29.9)

51.2
(-1.3)

52.9
(-18.8)

54.5
(-8.1)

59.1
(-29.0)

62.7
(-13.8)

62.8
(-17.3)

62.9
(-11.7)

Correlation between
Model’s Prediction
and Spurious Feature

Sentence Length 0.870 0.778 0.847 0.590 0.644 0.531 0.676 0.712
Present Tense 0.956 0.948 0.738 0.573 0.586 0.408 0.461 0.258
Embedding Cluster 0.858 0.807 0.751 0.705 0.876 0.753 0.447 0.428
Plural Noun 0.853 0.774 0.775 0.484 0.911 0.702 0.393 0.234
Average 0.884 0.827 0.778 0.588 0.754 0.599 0.494 0.408

Table D.1: Accuracy (↑), accuracy drop (↑), and prediction-feature correlation (↓) on four classification
tasks of GPT-3 (Ada, 2.7B), finetuned with and without explanations.

settings, the number of training epochs is set to 4 and the learning rate is set to 2e-5. Our finetuning

experiments of T5 and BART are run on a Kepler K80 GPU. The finetuning of the OPT models is

run on an RTX A6000. Each finetuning takes 5 to 10 minutes depending on the task.

D.1.2. Computational Resources

All experiments performed using GPT-3 including all finetuning were performed using the OpenAI

public API. We note that every finetuning experiment on each cue and dataset in this paper costs

around $10 to perform. Across all our datasets, creating a finetuned model involving 1k samples

cost around $5 when tuned without explanations and $7 with explanations. Performing evaluation

with these finetuned models then cost around a dollar when evaluating on 500 samples.

All other experiments involving heavy computational resources such as finetuning T5 and BART

were performed on Google Colaboratory with GPU-accelerated notebooks available on the pro

subscription.

D.2. Results for Other Models

In our main experiments in Section 7.5 and Section 7.6, we use OpenAI GPT-3 (Davinci(175B),

Curie(13B), Babbage(6.7B), and Ada (2.7B), since their relatively large size may allow for the

generation of higher-quality experiments, as suggested by (Wei et al., 2022a).
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ComVE CREAK e-SNLI SBIC
Standard Explain Standard Explain Standard Explain Standard Explain

Accuracy
(δacc)

No Cue 87.4 74.0 76.8 68.6 90.4 86.0 78.0 78.6

Sentence Length 50.4
(-37.0)

59.0
(-15.0)

52.8
(-24.0)

59.4
(-9.2)

62.2
(-28.2)

60.6
(-25.4)

51.2
(-26.8)

52.0
(-26.6)

Present Tense 54.2
(-33.2)

69.6
(-4.4)

55.8
(-21.0)

61.6
(-7.0)

75.0
(-15.4)

76.4
(-9.6)

73.6
(-4.4)

75.6
(-3.0)

Embedding Cluster 50.8
(-36.6)

55.6
(-18.4)

51.8
(-25.0)

55.4
(-13.2)

63.2
(-27.2)

69.0
(-17.0)

54.8
(-23.2)

56.6
(-22.0)

Plural Noun 52.8
(-34.6)

64.8
(-9.2)

54.4
(-22.4)

62.6
(-6.0)

59.8
(-30.6)

63.6
(-22.4)

75.8
(-2.2)

78.2
(-0.4)

Average 52.1
(-35.4)

62.3
(-11.8)

53.7
(-23.1)

59.8
(-8.8)

65.1
(-25.4)

67.4
(-18.6)

63.9
(-14.2)

65.6
(-13.0)

Correlation between
Model’s Prediction
and Spurious Feature

Sentence Length 0.821 0.524 0.894 0.659 0.633 0.582 0.753 0.735
Present Tense 0.791 0.528 0.704 0.465 0.439 0.341 0.417 0.269
Embedding Cluster 0.815 0.675 0.735 0.665 0.761 0.484 0.570 0.551
Plural Noun 0.838 0.494 0.714 0.373 0.721 0.579 0.220 0.191
Average 0.816 0.555 0.762 0.541 0.639 0.496 0.490 0.437

Table D.2: Accuracy (↑), accuracy drop (↑), and prediction-feature correlation (↓) on four classification
tasks of GPT-3 (Babbage), finetuned with and without explanations.

We also generalize this approach to other model families including T5-base (220M), BART-base

(110M), and OPT (1.3B). Table D.4 and Table D.5 show the results for these T5 and BART models

respectively. Under the “no cue” condition, their performance is generally much worse than GPT-3

models. The penalty of introducing explanations in finetuning is also more striking, oftentimes

resulting in an accuracy around or lower than chance (50.0). When the training set contains spurious

cues, our method still generally works for both T5 and BART on three of the four datasets, as

measured by δfacc(M,FT ) and corrf (M
FT
f ). However, the absolute accuracy is almost consistently

lower for explanation-based finetuning than for standard finetuning, most likely due to the huge

penalty under the “no cue” condition in the first place.

As an exception, on the SBIC dataset, our method does not always work well. For the T5 model,

across all spurious features, explanation-based finetuning results in a similar or worse δacc (the

difference is always less than 2.0 percent). It also fails to reduce the prediction-feature correlation

for any spurious feature except the “embedding cluster” one, where the correlation only decreases

by 0.03. For the BART model, our method does make it more robust to the “embedding cluster”

and the “plural noun” cues but no other cues, as reflected by both the accuracy drop and the

prediction-feature correlation. We hypothesize that this is because of the model does not rely heavily

on the cues in the first place, as shown by the lower prediction-feature correlations in the case of
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ComVE CREAK e-SNLI SBIC
Standard Explain Standard Explain Standard Explain Standard Explain

Accuracy
(δacc)

No Cue 92.2 84.2 83.2 76.0 91.4 88.2 78.8 76.8

Sentence Length 56.2
(-36.0)

73.6
(-10.6)

54.8
(-28.4)

70.4
(-5.6)

78.2
(-13.2)

73.0
(-15.2)

53.0
(-25.8)

52.0
(-24.8)

Present Tense 62.8
(-29.4)

82.2
(-2.0)

62.8
(-20.4)

69.8
(-6.2)

79.2
(-12.2)

88.6
(-0.4)

77.2
(-1.6)

76.4
(-1.84)

Embedding Cluster 70.0
(-22.2)

70.6
(-13.6)

58.2
(-25.0)

60.6
(-15.4)

63.4
(-28.0)

82.6
(-5.6)

57.8
(-21.0)

58.4
(-18.4)

Plural Noun 65.0
(-27.2)

82.2
(-2.0)

60.0
(-23.2)

73.0
(-3.0)

59.0
(-32.4)

78.4
(-9.8)

76.2
(-2.6)

77.0
(0.2)

Average 63.5
(-28.7)

77.2
(-7.1)

59.0
(-24.3)

68.5
(-7.6)

70.0
(-21.5)

80.7
(-7.6)

66.1
(-12.8)

66.0
(-10.9)

Correlation between
Model’s Prediction
and Spurious Feature

Sentence Length 0.736 0.347 0.872 0.413 0.305 0.333 0.684 0.701
Present Tense 0.756 0.244 0.589 0.402 0.364 0.075 0.244 0.231
Embedding Cluster 0.444 0.426 0.678 0.533 0.738 0.226 0.386 0.418
Plural Noun 0.594 0.267 0.570 0.208 0.777 0.278 0.183 0.114
Average 0.633 0.321 0.677 0.389 0.546 0.228 0.399 0.366

Table D.3: Accuracy (↑), accuracy drop (↑), and prediction-feature correlation (↓) on four classification
tasks of GPT-3 (Curie), finetuned with and without explanations.

standard finetuning.

We further generalize our method to OPT (1.3b) with results shown in Table D.6. Its performance

under the “no cue” condition is comparable with the performance of Ada (Table D.1). Compared

to standard finetuning, our method effectively mitigates the accuracy drop (δfacc(M,FT )) and the

correlation between the prediction and the cue (corrf (MFT
f )) averaged across all datasets. These

results are mixed across cues however: the absolute accuracies of the with-explanation models for

most tasks are lower when the “present tense” cue is introduced but are improved for all tasks in

case of the “embedding cluster” cue.

Generally, compared to GPT-3, our method still works on most of the datasets for T5 and BART,

but with smaller benefits. This is most likely because explanation generation is in itself a challenging

task for smaller models, thus resulting in a larger penalty on accuracy in the “no cue” condition.

The results of the larger OPT model lend greater credence to the validity of the assumption.

D.3. Dataset-Specific Spurious Cues

In addition to the four common spurious cues in the main text, we also construct dataset-specific

spurious correlations to simulate realistic cues that can naturally appear in each dataset:

Higher Perplexity (CREAK). Using GPT-2 to measure perplexity, we filter the data into a set
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ComVE CREAK e-SNLI SBIC
Standard Explain Standard Explain Standard Explain Standard Explain

Accuracy
(δacc)

No Cue 76.4 49.8 55.2 41.4 86.6 55.6 69.4 65.0

Sentence Length 53.6
(-22.8)

51.2
(1.4)

52.6
(-2.6)

45.6
(4.2)

64.0
(-22.6)

51.6
(-4.0)

56.0
(-13.4)

53.4
(-11.6)

Present Tense 61.6
(-14.8)

51.2
(1.4)

50.0
(-5.2)

41.8
(0.4)

79.4
(-7.2)

42.6
(-13.0)

70.6
(1.2)

63.6
(-1.4)

Embedding Cluster 59.4
(-17.0)

44.6
(-5.2)

49.4
(-5.8)

38.4
(-3.0)

69.8
(-16.8)

42.6
(-13.0)

71.8
(2.4)

64.0
(-1.0)

Plural Noun 73.8
(-2.6)

53.4
(3.6)

50.8
(-4.4)

40.6
(-0.8)

59.4
(-27.2)

43.8
(-11.8)

69.4
(0.0)

66.4
(1.4)

Average 62.1
(-14.3)

50.1
(0.3)

50.7
(-4.5)

41.6
(0.2)

68.2
(-18.5)

45.2
(-10.5)

67.0
(-2.5)

61.9
(-3.2)

Prediction-
Feature
Correlation

Sentence Length 0.641 0.402 0.699 0.115 0.524 0.384 0.222 0.376
Present Tense 0.653 0.166 0.575 0.513 0.281 0.231 0.217 0.319
Embedding Cluster 0.645 0.463 0.694 0.456 0.494 0.169 0.504 0.473
Plural Noun 0.343 0.176 0.481 0.269 0.722 0.207 0.107 0.205
Average 0.571 0.302 0.612 0.338 0.505 0.248 0.263 0.343

Table D.4: Accuracy (↑), accuracy drop (↑), and prediction-feature correlation (↓) on four classification
tasks of T5-base, finetuned with and without explanations.

with above-median perplexity and a set with below-median perplexity. This feature is considered to

be present if the perplexity of the sentence is higher than the median perplexity and is positively

labeled.

Gender Female (e-SNLI). If the premise contains female-related pronouns (woman, women, girl,

lady, etc.), we consider the “gender female” spurious cue to be present. The aforementioned words

frequently appear in the e-SNLI dataset when the sentence is relevant to females.

Username Mentions (SBIC). If the social media post contains an “@” sign, meaning the author

might be tagging or directly replying to other users on social media, we consider the spurious cue to

be present. This feature is supposed to have no causal relationship with whether a post is offensive.

POS-tag of Swapped Word (ComVE). The ComVE dataset requires us to compare two

sentences and output which sentence makes more sense, the two sentences have high lexical overlaps.

We consider the part of speech (POS) of the first word which is different between the two sentences

and say that the POS tag of swapped word spurious cue is present if this word is a noun.

Table D.7 shows the performance of GPT-3 (Davinci). When adding “gender female” spurious cues to
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ComVE CREAK e-SNLI SBIC
Standard Explain Standard Explain Standard Explain Standard Explain

Accuracy
(δacc)

No Cue 53.2 48.0 59.0 46.0 85.6 46.2 76.8 51.0

Sentence Length 42.8
(-10.4)

43.6
(-4.4)

54.6
(-4.4)

48.4
(2.4)

54.4
(-31.2)

43.4
(-2.8)

50.8
(-26.0)

50.2
(-0.8)

Present Tense 55.2
(2.0)

54.0
(6.0)

53.2
(-5.8)

48.0
(2.0)

58.8
(-26.8)

44.0
(-2.2)

70.8
(-6.0)

63.0
(12.0)

Embedding Cluster 48.0
(-5.2)

47.2
(-0.8)

49.6
(-9.4)

44.0
(-2.0)

54.0
(-31.6)

40.6
(-5.6)

68.6
(-8.2)

60.0
(9.0)

Plural Noun 54.0
(0.8)

51.2
(3.2)

53.2
(-5.8)

46.8
(0.8)

52.8
(-32.8)

48.4
(2.2)

65.2
(-11.6)

53.8
(2.8)

Average 50.0
(-3.2)

49.0
(1.0)

52.7
(-6.4)

46.8
(0.8)

55.0
(-30.6)

44.1
(-2.1)

63.9
(-13.0)

56.8
(5.8)

Prediction-
Feature
Correlation

Sentence Length 0.667 0.638 0.762 0.629 0.724 0.745 0.288 0.706
Present Tense 0.881 0.744 0.603 0.454 0.702 0.159 0.241 0.314
Embedding Cluster 0.817 0.792 0.801 0.700 0.854 0.301 0.555 0.395
Plural Noun 0.823 0.230 0.607 0.491 0.884 0.439 0.287 0.210
Average 0.797 0.601 0.693 0.569 0.791 0.411 0.343 0.406

Table D.5: Accuracy (↑), accuracy drop (↑), and prediction-feature correlation (↓) on four classification
tasks of BART-base, finetuned with and without explanations.

the e-SNLI dataset, we find strong evidence that explanations make the model less susceptible to the

spurious cue. In standard finetuning, the prediction-feature correlation is 0.684 and the accuracy is

55.8, suggesting the model relies heavily on the spurious pattern. Meanwhile, for the model finetuned

with explanations, this correlation drops to 0.080, and the accuracy increases to 86.6. The results

for dataset-specific cues of the ComVE and CREAK datasets are consistent with our finding that

our approach is most effective when the spurious cues highly impact the model performance. On

the SBIC dataset, explanation-based finetuning only decreases the prediction-feature correlation

by 0.076. This could be due to the fact that the “username mention” cue is the most shallow one

among all domain-specific cues, since the model only needs to detect one token (“@”), which makes

it surprisingly easy for it to pick up the cue.

149



ComVE CREAK e-SNLI SBIC
Standard Explain Standard Explain Standard Explain Standard Explain

Accuracy
(δacc)

No Cue 78.4 82.6 75.2 66.0 86.8 72.7 76.0 73.6

Sentence Length 50.6
(-27.8)

63.4
(-19.2)

56.4
(-18.8)

62.0
(-4.0)

73.0
(-13.8)

56.4
(-16.3)

54.0
(-22.0)

56.2
(-17.4)

Present Tense 62.6
(-15.8)

70.2
(-12.4)

66.8
(-8.4)

61.4
(-4.6)

72.4
(-14.4)

67.8
(-4.9)

72.0
(-4.0)

66.2
(-7.4)

Embedding Cluster 53.4
(-25.0)

58.6
(-24.0)

53.6
(-21.6)

55.2
(-10.8)

55.4
(-31.4)

56.0
(-16.7)

63.6
(-12.4)

64.8
(-8.8)

Plural Noun 65.6
(-12.8)

67.2
(-15.4)

60.0
(-15.2)

61.6
(-4.4)

54.8
(-32.0)

58.2
(-14.5)

72.6
(-3.4)

69.8
(-3.8)

Average 58.1
(-20.4)

64.9
(-17.8)

59.2
(-16.0)

60.1
(-6.0)

63.9
(-22.9)

59.6
(-13.1)

65.6
(-10.5)

64.3
(-9.3)

Correlation between
Model’s Prediction
and Spurious Feature

Sentence Length 0.376 0.221 0.784 0.286 0.237 0.102 0.093 0.008
Present Tense 0.686 0.282 0.499 0.437 0.419 0.331 0.224 0.187
Embedding Cluster 0.693 0.571 0.727 0.529 0.852 0.555 0.397 0.319
Plural Noun 0.641 0.183 0.385 0.218 0.762 0.463 0.114 0.129
Average 0.599 0.314 0.599 0.368 0.568 0.363 0.207 0.161

Table D.6: Accuracy (↑), accuracy drop (↑), and prediction-feature correlation (↓) on four classification
tasks of OPT (1.3b), finetuned with and without explanations.

ComVE CREAK e-SNLI SBIC
Standard Explain Standard Explain Standard Explain Standard Explain

Accuracy
(δacc)

No Cue 97.0 95.6 84.2 85.0 91.6 89.2 79.0 75.0

Domain Specific 93.6
(-3.4)

90.4
(-5.3)

80.5
(-3.7)

79.0
(-6.0)

55.8
(-35.8)

86.6
(-2.6)

42.6
(-36.4)

38.3
(-36.7)

Prediction-
Feature
Correlation

Domain Specific 0.055 0.097 0.112 -0.026 0.684 0.080 0.991 0.915

Table D.7: Accuracy (↑), accuracy drop (↑), and prediction-feature correlation (↓) on four classification
tasks of GPT-3 (Davinci, 175B), finetuned with and without explanations. The skewed training sets
contain domain-specific cues.
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