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Abstract

This thesis presents a method and analysis to generating tools for text-adventure

game authors using OpenAI’s GPT-3 API.

If the reader is familiar with Zork, Enchanter, Anchorhead, or even Colossal Cave

Adventure, text-based adventure games might already sound familiar. To be more

specific, text-based adventure games are one of the oldest video game genres, and

often considered to be their origin.

Interactive Fiction games are fully text-based simulation environments where a

player issues text commands to effect change in the environment and progress through

the story. Figure 1 shows an example of such a game.

Figure 1: An example for text-based adventure game

These games typically feature a text parser, a user interface that allows the player
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to interact with the game solely using typed commands. They also feature a storyline

which is mostly linear, although there are multiple possible ways to reach a given

ending, and deliberate puzzles within the games.

Text-based games are a form of interactive fiction, the term used to describe a

text-only computer game. The term refers to a story-based game that features only

text, as opposed to a graphical interface. Text-based adventures were more popular

before the introduction of the point-and-click interface, in part because they required

fewer resources to implement.

30 years ago, on the subject of fictional text generation, the following exchange

occurred in 1992 between Morpheus Nosferatu and Phil Goetz on Usenet, the 1990s

version of Reddit:

From: goetz@acsu.buffalo.edu (Phil Goetz)

Subject: Re: Adventure generators (skippable)

Newsgroups: rec.arts.int-fiction

Date: 29 Oct 92 04:40:05 GMT

Sender: nntp@acsu.buffalo.edu

Organization: State University of New York at Buffalo/Comp Sci

morpheus@sage.cc.purdue.edu (Morpheus Nosferatu) writes:

> Has anyone ever worked on, or even heard of, an adventure generator?

>

> I’m not talking about an adventure design language like TADS or Alan,

> but rather a stand-alone adventure generator that produces complete

> adventures, where the user need only give a minimal degree of input,

> such as the level of complexity, type of adventure (mystery, treasure

> hunt, etc.), size of adventure, and so forth?
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> ...

> But as anyone ever heard of someone trying to come up with a generator

> whigh would produce infocom-style text adventures? I can just imagine

> what kind of limitations it would have, but I’m curious to know if

> anyone has tried this, and if so what degree of success they’ve had.

No. ... The generator you speak of is not written, not being written,

and not anywhere on the horizon. In 50 years, maybe. In 20,

definitely not. The problem of writing interesting stories, which

adhere to someone’s definition of a plot (with goal explanations,

conflict, resolution, comlication, climax, etc., all occuring at

appropriate intervals) is very hard, and I don’t expect a solution

soon. But the problem of writing clever puzzles involves much greater

creativity, and I have seen NO evidence that ANYBODY has a clue in

these creativity issues; the most you will find in the field are a

few vague theories of creativity.

This problem is what Stuart Shapiro calls "AI-complete": Solving it

would be equivalent to solving all the other problems of AI.

Phil

This thesis shows that Phil Goetz’s time estimate was surprisingly accurate, in that

it illustrates how 30 years after that discussion, language models in 2021 are in fact

capable of generating creative, human-like fictional texts.
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Chapter 1

Introduction

Text-adventure games - Why are they interesting in Natural Language Processing?

As the thesis has previously mentioned, generating fictional text was - for the longest

time - thought to be impossible in the world of Natural Language Processing. How-

ever, with the invention of bigger and better language models then ever before (such

as OpenAI’s GPT-3), imitating the creativity and variability of a human’s phrasing,

terminology and style. The following are some areas that are going to be explored in

this thesis:

• What makes a good text-adventure game? Due to the subjective nature of the

question, there are several ways to answer this. However, there is one thing that

is generally agreed upon: having creative rooms, objects characters that have

unique and colorful identifiers enrich the game, which make the creative side of

the language model so critical.

• How to generate game-appropriate text? There are a few methods to achieve this

goal, of which two are going to be explored further in this thesis.

Fine-tuning, which happens when there is a large amount of training data avail-

able and thus makes it possible to retrain the last few layers of the model.
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The second method is Few-shot learning, which is possible with only a handful

of appropriate examples. Depending on the size and capabilities of the language

model, few-shot learning could imitate the competence of Fine-tuning with much

less overhead.

• What is the most cost- and time-efficient method to implement for such auto-

generation of Text-adventure games? To answer this question, several different

engines by OpenAI will be tested, such as Davinci, which is the largest and

strongest engine, Curie, which is slightly less powerful yet very effective, and

Babbage, the weakest of the three. Since Davinci is the most effective, however,

it also comes at a much higher cost and therefore an evaluation of the cost-to-

value ratio needs to be done.

• How to evaluate the generated text and attributes? For different tasks, there are

different ways to evaluate the performance of the language model.

In the case of text generation, subjective evaluation was applied to be able to

differentiate between a human and a language model in terms of their ability to

mimic a certain style and their creativity.

However, in the case of item attributes, a traditional binary classification is suf-

ficient, which the thesis will discuss later at length.

• How to generate the game? The thesis presents a strategy to generate such a

convoluted and involved fantasy world.

First, descriptions of rooms, characters and objects are to be generated using

several different versions of engines, some trained with fine-tuning and/or few-

shot learning.

Secondly, item attributes are generated using only few-shot examples due to their
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nature of being binary attributes and require much less training of the model.

1.1 Using large language models to generate text-

based adventure games

The rest of the Thesis is structured as follows:

• Chapter 2 provides a Literature Review that goes over research about language

generation and the most advanced models in the field, as well as various tech-

niques, such as few-shot learning and fine-tuning.

• Chapter 3 goes into further detail about the data that was used by this thesis,

the LIGHT data from Facebook’s publication ”Learning in Interactive Games

with Humans and Text”.

• Chapter 4 outlines the method employed in generating descriptions for various

aspects of the game. To assess the the result, subjective evaluation is to be used

to analyze the descriptions and compare them to that of humans’.

• Chapter 5 describes the method with which attributes were generated for objects

with the Curie model as well as the objective evaluation used for analyzing the

results.

• Chapter 6 discusses a summary of the results and potential directions for future

work.
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Chapter 2

Literature Review

2.1 Text-based Adventure Games

For any task that calls for storytelling skill, creating a fictional world is the most

important. The authors of the paper “Bringing Stories Alive: Generating Interactive

Fiction Worlds” concentrate on developing creative fantasy worlds. These are worlds

that players interact with using natural language. To create these worlds, the game

environment not only needs to be semantically logical, coherent, and persistent but

also demands a through understanding of everyday rational.

P. Ammanabrolu et al elaborate on an approach that derives a knowledge graph

that incorporates vital information regarding world structure such as rooms and items,

using existing fictional writing as a template. The graph is needed to extract thematic

knowledge and for it to guide a language model that generates the rest of the fantasy

world. Similar to this thesis, the authors also chose to do evaluation with human

participants to test their neural language model’s ability to derive information and

build a knowledge graph and to generate text against human-formulated language. [1]

It is a widely accepted fact that generating creative and logical narrative-style
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game worlds is one of the most cumbersome, expensive and time-consuming challenges

in natural language processing. The authors of “Generating Interactive Worlds with

Text” [4] argue that logic needs to be built into the language model in order for the

relationships between different elements of the game (such as locations, characters and

objects) to make sense together. A. Fan et al study a method where they generate

a fantasy environment utilizing the LIGHT game environment (identical to the data

that this thesis used).

They propose a language model that is able to generate convoluted web of rooms,

personas, items into a world that is coherent and logical to the player. The goal of the

authors is to not only understand the connection between the existing elements but to

build upon them, similarly to the goal of this work. Several of the strategies mentioned

in the paper ended up in this thesis, since it was shown that the worlds generated with

this method are cohesive, diverse. Furthermore they were convincing to the human

evaluators when compared to other worlds constructed by neural networks. [4]

Some may argue that the ability to understand and communicate with language

is the biggest virtue of human intelligence , similarly to the authors of “Interactive

Fiction Games: A Colossal Adventure”.[6] They argue that since interactive fiction

games are a perfect combination of logical reasoning, natural language understanding

and convoluted action spaces, these worlds provide a great testing environment for

language-based autonomous agents.

This is most likely also the reason why Facebook created their LIGHT environment

to generate autonomous dialogues with their help, as well. [12] Furthermore, the

authors of the paper “What can you do with a rock? Affordance extraction via word

embeddings” also applies this approach to a RL (reinforcement learning) agent in a

text-based world. [5]

Similarly, TextWorld is a sandbox learning environment for the training and as-
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sessment of reinforcement learning agents on text adventure games. Likewise to the

goal of this thesis, the motivation behind this work was to enable users of TextWorld

to automatically construct new games. The authors of “TextWorld: A Learning Envi-

ronment for Text-based Games” also point out that it gives the users precise control

over the language of generated games as well as the complexity and scope. N. Fulda

et al emphasize that TextWorld can not only be utilized for fictional text generation

but also be used to study transfer learning as well as generalization. [3]

2.2 Large Neural Models

For generating text, I chose the state-of-the-art language model, OpenAI’s GPT-3

[2]. This model was built with the goal to use and improve previous works that have

illustrated considerable improvements on many natural language processing applica-

tions and standards by training on an enormous amount of content (as large as 45TB

of text data) which is then followed by fine-tuning for a specific job. [2]. The model

is impressive even by its size: GPT-3 is an autoregressive transformer language model

with no less than 175 billion parameters. This is ten times more than any previous

dense (non-sparse) language model.

GPT-3 is revolutionary because even though most previous ground-breaking models

have been task-agnostic in architecture, they still required task-specific fine-tuning

datasets of thousands or tens of thousands of examples – which is unnecessary for

humans to do. Fine-tuning in the field of natural language processing refers to the

procedure of re-training the last few layers of a language model - that was pre-trained

on a huge corpus of text - using own custom data, resulting in that the weights of the

initial model are modified to account for the characteristics of the custom data and the

task at hand.
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However, OpenAI has shown that—by scaling up their language model—task-

agnostic, few-shot performance greatly improves. Few-shot learning means that a

model is trained on some classes and predict for a new class, which the model has

only seen a handful of examples of. To test this capability on text-adventure games,

this thesis will dive into some experiments that were conducted on models trained

with fine-tuning only, few-shot examples only as well as with fine-tuning and few-shot

examples.

In its introductory paper, Brown et al. [2] tested GPT-3 on several different tasks

without fine-tuning and only used few-shot examples in their analysis. They found that

the model performs consistently and extremely well on many NLP datasets, such as

translation, question-answering, and Cloze tasks, as well as several tasks that require

on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel

word in a sentence, or performing 3-digit arithmetic.

It is also important to note that the authors describe an experiment after which they

concluded that GPT-3 can create news articles that humans find genuinely difficult to

distinguish from human-written articles. [2]. This analysis prompted the “subjective

evaluation” part of this thesis, where annotators were asked to distinguish between a

human-written and 4 different generated texts through crowdsourcing (See Chapter 5).

2.3 Few-Shot Learning

Even before GPT-3, countless large-scale pre-trained language models have have

demonstrated remarkable abilities as few-shot learners, thus helping Natural Language

Processing to make enormous strides in the last few years. Many have found however

that they are still yet to be particularly useful in real-life scenarios, since their true

capabilities are limited by the model parameters and design.
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The authors of DifferentiAble pRompT (DART) [13] came up with a method which

can convert smaller, less capable language models into better models and few-shot

learners without having to do any prompt engineering.

This method works by essentially translating natural language processing tasks to

the task of a pre-trained language model as well as differentially optimizing not only

the target label but also the prompt template with backpropagation. This thesis also

has a significant amount of prompt engineering, where several of the above mentioned

strategies served as guidance (see more in Chapter 5).

Naturally, after generating text with the help of fine-tuning, I big question remains

to be answered: how to evaluate text-based adventure games, which are similar in

nature to fictional texts? Natural Language Processing has been going through a revo-

lution in the past decade largely due to amazing advancements in large-scale language

models [11]. It is undeniable that they have brought considerable qualitative as well

as quantitative advancements in the field of automated language generation.

However, Matiana et al. [9] argue that creating and evaluating of fictional text

remains a difficult task, since objective evaluation of machine-generated narrative text

may need human-annotated datasets and would be exceedingly expensive. Even so,

it is highly likely that such an evaluation would not appropriately assess the logical

coherence of a generated text’s fictional structure.

However there have been significant advances in contrastive learning [10], with the

help of which Matiana et al. [9] present Contrastive Authoring and Reviewing Pairing

(CARP). It is a powerful and scalable method for performing qualitatively superior,

zero-shot assessment of narrative text, in fact the paper describes a solid correlation

between the CARP evaluation and those of humans.

Similarly to the paper’s suggestion, this thesis describes human evaluation of machine-

generated fiction-like text at length.
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2.4 Fine-Tuning

A significant work in the field of fine-tuning has been the research about prompting

language models with training examples and task descriptions by using the driving

force of few-shot learning.

In fact, the authors of the paper ”Cutting down on prompts and parameters: Simple

few-shot learning with language models” discuss that fine-tuning language models in

the few-shot setting can significantly lower the need for prompt engineering. They

argue that one achieve competitive accuracy to manually-tuned prompts across a wide

range of tasks even if they use null prompts or prompts that contain neither task-

specific templates nor training examples.

Through the act of fine-tuning, new parameters are generated for each individual

task, however the architects of this model point out that fine-tuning only the bias

terms can achieve comparable or better accuracy than standard fine-tuning while only

updating 0.1 percent of the parameters. Thus, the memory overhead of fine-tuning can

be radically mitigated. [8]

Arguably, previous GPT models that were fine-tuned the traditional way have failed

to show good results on natural language understanding. However, with the method

of P-tuning, Liu et al. [7] demonstrate that GPTs can be better than or comparable

to similar-sized BERTs on natural language understanding tasks.

This method employs trainable continuous prompt embeddings. On the knowl-

edge probing (LAMA) benchmark, the best GPT recovers 64 percent (P@1) of world

knowledge without any additional text provided during test time, which substantially

improves the previous best by 20+ percentage points [7]. On the SuperGlue bench-

mark, GPTs achieve comparable and sometimes better performance to similar- sized

BERTs in supervised learning. Importantly, we find that P-tuning also 9 improves
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BERTs’ performance in both few-shot and supervised settings while largely reducing

the need for prompt engineering. Consequently, P-tuning outperforms the state-of-the-

art approaches on the few-shot SuperGlue benchmark.
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Chapter 3

Facebook’s LIGHT data

Facebook introduced a large scale crowdsourced text adventure game as a research

platform for studying dialogue grounded in a virtual setting [12]. In it, AI agents (or

human players) can perceive, emote, and act whilst conducting dialogue with other

agents.

Models and humans can both act as characters within the game. Similarly to this

thesis, the authors of the LIGHT (Learning in Interactive Games with Humans and

Text) data paper conducted experiments for training state-of-the-art generative and

retrieval models in the world of text-adventure games. [12]

It contains two files: light data.json and light unseen data.json, both of

which are datasets containing dialogues, which was the main goal of Facebook’s research

was focused on generating dialogues. It contains a third file, light environment.json,

is a dataset made of the entire world of this text-adventure game. The goal of the thesis

is not to primarily generate dialogue, rather to generate situations, filled with specific

rooms, characters and objects. The LIGHT environment dataset is a great fit for the

tasks in this thesis.

It is structured as a hash table, where some of the keys found are categories, char-
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acters, objects, neighbors, etc. It is important to note that each category consisted of

several rooms and that each room could only exclusively be found in one category.

Furthermore, all rooms, characters, as well as objects have a myriad of attributes

associated with them (binary, for example if a given object is a weapon or not) and

of course one or several descriptions (in the case of characters, both a persona and a

description came with each character).

To better understand the data structure, let’s look at the schema more closely

below:

3.1 Data Structure Examples

3.1.1 Category (Setting) Schema

Text adventure games have a series of locations (sometimes called “rooms”) that

a player explores. Each location has a description that is displayed to the user as she

enters. Rooms may also contain objects and characters.

The Facebook LIGHT Environment data includes information about locations. The

information that is stored about each location includes:

• setting - the name of the location

• description - a description of the location

• background - additional information about the location

• room id - a numeric identifier for the location

• category - a name for the ‘world’ that the location belongs to

• in characters - characters that are explicitly mentioned listed in the description

or the background
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• ex characters - characters that are possibly present but not mentioned directly

• in objects - things that are explicitly mentioned listed in the description or the

background

• ex objects - things that are possibly present but not mentioned directly

• neighbors - the locations that are adjacent to this location.

Here is an example of the data structure for a setting called “An Unfinished Mau-

soleum” from the “Graveyard” category.

Example: An Unfinished Mausoleum

{‘setting’: ‘An Unfinished Mausoleum’}

‘description’: ‘Two-and-a-half walls of the finest, whitest stone

stand here, weathered by the passing of countless seasons. There

is no roof, nor sign that there ever was one. All indications are

that the work was abruptly abandoned. There is no door, nor

markings on the walls. Nor is there any indication that any

coffin has ever lain here... yet.’,

‘background’: "Bright white stone was all the fad for funerary

architecture, once upon a time. It’s difficult to understand why

someone would abandon such a large and expensive undertaking.

If they didn’t have the money to finish it, they could have sold

the stone, surely - or the mausoleum itself. Maybe they just

haven’t needed it yet? A bit odd, though, given how old it is.

Maybe the gravedigger remembers... if he’s sober.",

‘room_id’: 62,

‘category’: ‘Graveyard’,
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‘ex_characters’: [204, 75, 156, 720],

‘ex_objects’: [1791, 1792, 439],

‘in_characters’: [203, 203],

‘in_objects’: [1790],

‘neighbors’: [108, 109],

}

3.1.2 Character Schema

The LIGHT data includes non-player characters (NPCs). These characters have a

name, a description, and a persona. A persona is written in the first person, as if the

character is introducing herself. Characters can have objects that they are carrying,

wearing or wielding.

Here is an example of a character from the dataset. It includes additional infor-

mation about the type of character (person or creature or animate object), and rooms

where the character might be located.

Example: gravedigger

{‘name’: ‘gravedigger’,

‘char_type’: ‘person’,

‘desc’: ‘You might want to talk to the gravedigger, specially if

your looking for a friend, he might be odd but you will find a

friend in him.’,

‘personas’: ["I am low paid labor in this town. I do a job that

many people shun because of my contact with death. I am

very lonely and wish I had someone to talk to who isn’t dead."],

‘corrected_name’: ‘gravedigger’,

‘character_id’: 203,
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‘base_form’: [‘gravedigger’],

‘is_plural’: 0,

‘ex_room_ids’: [100, 349],

‘in_room_ids’: [62],

‘orig_room_id’: 349,

‘carrying_objects’: [890],

‘wearing_objects’: [],

‘wielding_objects’: [],

}

3.1.3 Object Schema

In addition to locations and characters, text adventure games have objects that

players can interact with by picking up and using. Different objects have different

uses. For instance, some can be used as a weapon, and some can be worn. What an

object can be used for depends on its properties. The LIGHT dataset defines several

different properties, which are represented a binary values on each object. These binary

values are:

• is container - can be used to store other objects

• is drink - can be drunk

• is food - can be eaten

• is gettable - can be picked up and put into the player’s inventory

• is plural - this is a plural noun

• is surface - other objects can be put onto this object
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• is weapon - can be used as a weapon

• is wearable - can be worn like clothing

Objects also have a description. Since the LIGHT data was originally collected from

multiple people, many objects have multiple descriptions written by different people.

The descriptions are stored in a list, and the ‘desc entries’ variable indicates how long

the list is.

Each object has a name, a linguistic base form, and a numeric ID. Here is an

example of the data stored for the object ‘Legendary Swords’. Example: Legendary

swords

{‘name’: ‘Legendary swords’,

‘object_id’: 1188

‘base_form’: [‘sword’, ‘Sword’],

‘desc_entries’: 2,

‘descriptions’: [‘The sword is very old, you would assume it had

once belonged to a legendary warrior.’,

"The sword’s legend is known by everyone, it is famous

throughout the land."],

‘ex_room_ids’: [],

‘holding_character_ids’: [],

‘in_room_ids’: [12],

‘is_container’: 0.0,

‘is_drink’: 0.0,

‘is_food’: 0.0,

‘is_gettable’: 1.0,

‘is_plural’: 1.0,
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‘is_surface’: 0.0,

‘is_weapon’: 1.0,

‘is_wearable’: 0.0,

‘link_entries’: 1}

For the experiments in the next chapter, I use the LIGHT data to train a text

generation system to generate a description given the name of a location, or the name

of a character, or the name of an object.
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Chapter 4

Generating Descriptions for items

and rooms, and personas for

characters

4.1 Task

One of the main tasks in this thesis was generating descriptions for rooms as well

as attributes and personas for the characters. Given the name, the language model

was tasked with creating descriptions that not only closely resemble but outperform

human-written descriptions. These descriptions not only have to be of similar length

but also stylistically match fiction-like adventure games.

4.2 Data split

To make sure that the data that was used during the fine-tuning of the model or

utilized as one of the few-shot examples, I chose to do the traditional 80-10-10 split.
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• 80 percent of the data was used for training purposes a.k.a. for fine-tuning the

GPT-3 model Curie

• 10 percent of the data was used to give the model few-shot examples (Davinci,

as well as Curie and Babbage)

• and the remaining 10 percent was used to generate descriptions for.

The three “datasets”, or rather parts of the dataset that this thesis is mostly

concerned with, had vastly different sizes/lengths. Let’s look at how the size of the

train/dev/test set differed for each of these three aspects:

• Rooms:

train: 532

test: 66

dev: 63

• Characters:

train: 1405

test: 175

dev: 175

• Objects:

train: 2770

test: 346

dev: 346

The rooms had the smallest number of examples, and therefore the fewest number

of examples that was at my disposal to train / fine-tune with, namely 532 name-

description pairs (or in terms of fine-tuning, prompt-conpletion pairs).
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Characters had slightly more, 1405 examples that were available for training as well

as 175 examples to be used for few-shot learning. However, 175 examples exceeded to

the number of maximum tokens that any one model could take in as input, which is

why the number of available examples in the dev dataset had to be reduced when used

in fine-tuning.

However, objects provided the best possibilities to fine-tune with and to test the

capabilities of this (potentially) powerful method with. 2770 prompt-completion exam-

ples was about 6 times as much as the number of examples available in rooms and twice

as much as what was available in characters. Therefore, my initial expectation was that

the object-fine-tuned Curie would perform the best out of all fine-tuned models.

4.3 Methods

4.3.1 Models

For this task several different models were chose in order to generate descriptions

with.

• First, Davinci was an obvious choice, being the strongest, largest and best per-

forming GPT-3 model. For calling this model through the API, I did the follow-

ing: I created a prompt or ”input” by selecting a handful of descriptions for each

of the rooms, objects and characters datasets and gave that to the model. One

thing to note is that I had to adjust the stop sequence the token length, etc. for

the model to behave appropriately. To get the model to generate the descriptions,

the name of the room/setting, object or character had to take place as the last

line. Since the model was given few-shot examples where the description ended

with a stop sequence, the model did not ”over-generate” and generated texts of
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appropriate length with the same stop sequence appended to it.

• Secondly, Curie was chosen as a candidate to be fine-tuned and held in direct

comparison to Davinci with. Similarly to Davinci, the settings had to be carefully

set such that the API call returned the generated text in the expected format

and of appropriate length.

• In addition to the Fine-tuned Curie model, I also added an extra layer of “train-

ing” in the form of few-shot learning, during which I gave the model an extra

layer of examples to create descriptions for characters, rooms and objects.

• Lastly, Babbage was chosen a sort of ”control” model. Being significantly weaker

than the other two, having been trained with less parameters, etc. it was expected

that it would perform considerably worse than both Davinci and Curie. Of course,

the same settings and data was given to Babbage as the other two, such that

”equal footing” was ensured for all three models.

In Google Colab, where most of the research for this thesis was completed, the API

call to OpenAI’s model for text generation looked like the following:

response = openai.Completion.create(

engine="davinci",

prompt=input + start_sequence + ’\n’,

temperature=0.7,

max_tokens=64,

top_p=1,

frequency_penalty=0.5,

presence_penalty=0,

stop=["==="])
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Here, engine represented the chosen model, the prompt consisted of the few-shot

learning examples (if relevant to the experiment) as well as the start sequence which

was the prompt for each example.

The max number of tokens was chosen to be 64, since the original descriptions were

fairly short, as well. Furthermore, I found that even by increasing this number to 256

for example, the model mostly generated shorter texts, similar length to the original

descriptions.

4.3.2 Few-Shot Learning

To generate text without fine-tuning the model, few-shot learning was required for

both Davinci, and the control model Babbage.

To be able to come up with a format for the input, I utilized OpenAI’s Playground

feature. First, only name-descriptions were input with a couple of lines in between

each example. However, after several trial and error iterations, it was decided that

adding a specific stop sequence, namely “[===]” followed by two newlines, would

serve best for our purposes. For more detail, please see the API call for each model in

the next section, where the only difference between calls was the setting for the model

parameter.

For reference, the few-shot learning examples looked the following when they were

used as input to the models:

Cottage safe-room

Stocked from floor to ceiling, food and medicine line the western

wall. The room is painted matte grey and contains a chest to the left

of the food and medicine. Three chairs and a table with a lamp are

what is left in the middle of the safe-room. Dimly lit, and a steady

water supply coming from the well outside of the cottage.
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===

Cottage entryway

A welcome mat adorns the floor at the foot of the door. A rack to

hang hats and coats is on the left hand side. Right above, a fan lazy

spins about on a hot summer day. A single bulb of light illuminates

the small hall that the entrance leads to. The entrance smells of the

fresh outdoors.

===

Unexplored jungle

Located outside of civilization, the jungle is a vast unknown. Many

plants never seen, many beasts never discovered. However, what is

known is that one cannot survive alone in this jungle. There are

many poisonous trees and plants and it is impossible to see the sun

once in it. Just an incredible amount of vast, dense and impassable

vegetation.

===

Abandoned Mine

As shown above, each example begins with the name of a room (or a character or

character), followed by the description after a newline character. Each example is

seperated by a stop sequence, which in the case of this thesis is “===”.
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4.3.3 Fine-tuning

To test the fine-tuning capabilities, I chose to fine-tune Curie to be held against

the high standards of Davinci. Specifically, 80 percent of the available dataset in

light environment.json was formatted such that each object, room and character

was split into a “prompt”, which was the name of the respective subject/object and a

“completion”, which was the description of each of the character, object and room.

Furthermore, during the first iteration of training, I ran into a problem where the

model would generate a longer-than-expected text and because of the limitation of 256

tokens, would stop mid-sentence. To mitigate this problem, a stop sequence was added

to the end of each “completion” string, such that the model would not generate longer

than appropriate text. After this fix, the model generated text that was of similar

length to the original examples and to the ones that Davinci generated.

For reference, please see an example for one prompt-completion pair used for fine-

tuning below.

{"prompt": "The rectory", "completion": "This room is quite small

and cramped. It’s about the size of maybe three wooden carts,

which is to say, it’s very small. There are boxes all over the place

and many candles and other church accessories. There are several

big robes hanging next to what looks like a very small closet.

Some candles shed an eerie light on the room, flickering softly.

There is a small cabinet with several religious tapes and records

and a few books. A book case is near and contains many

common religious texts.\n===\n\n"}

Furthermore, it is important to point out that the examples had to be formatted
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to be in a .jsonl data format, which the OpenAI’s fine-tuning API expected.

After fine-tuning, the resulting model had to be called the following way:

response = openai.Completion.create(

model=‘curie:ft-ccb-lab-members-2021-11-30-22-34-52’,

prompt=start_sequence,

temperature=0.7,

max_tokens=256,

top_p=1,

frequency_penalty=0.5,

presence_penalty=0,

stop=["==="]

)

return response.choices[0].text

4.4 Subjective Evaluation

In total, 4 different models were used for generating descriptions for rooms, char-

acters and objects. These models were:

• Davinci with few-shot learning

• Fine-tuned Curie

• Fine-tuned Curie with few-shot learning

• Babbage with few-shot learning

Additionally, for testing purposes, the original description (text) was added in the

testing phase.
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For collecting human-annotated data, which arguably is the most accurate eval-

uation of generated natural language we used Amazon’s Mechanical Turk as a user

interface, but we recruited our own annotators rather than relying on crowd workers

Our participants were mostly students in Professor Callison-Burch’s Artificial Intelli-

gence class (CIS 521) who were offered extra credit to participate. In total 45 students

participated rating a total of 66 locations, 175 characters and 346 objects.

To set up the experiment, each description was collected and written to a CSV file,

in this order: original, Davinci with few-shot learning, Fine-tuned Curie, Fine-tuned

Curie with few-shot learning, Babbage with few-shot learning for each of the rooms,

characters and objects datasets.

These CSV were then uploaded to Mechanical Turk and 3 separate batches were

released. The annotators were then given the name of the subject and the five de-

scription in the same order as described above. Several methods for the ratings were

considered, such as merely selecting the “best” option out of all descriptions, ranking

all 5 of them or even rating different aspects of each description.

However, the final format for annotating the generated texts was the following: For

each description, the annotator had to rate the description on a 5-point Likert scale

(with 5 being the best).

The tasks were set such that each example was shown to 5 separate annotators to

ensure agreement between them and weed out any outliers.

The batches looked like the following:

• rooms had 66 unique examples and resulted in 460 separate Mechanical Turk

tasks

• characters had 175 unique examples and resulted in 350 separate Mechanical

Turk tasks

31



• objects had 346 unique examples and resulted in 330 separate Mechanical Turk

tasks

4.5 Results

To evaluate the results of the Amazon Mechanical Turk annotation tasks, there are

several analyses that were conducted for this thesis.

• Firstly, the number of 1, 2, 3, 4 and 5 ratings were counted for each individual

version (Tables 4.1, 4.3, & 4.5). It was the initial thought that the description

with the most number of 5’s (the highest rating) may be a good indicator for

the quality of said description, however after some deliberation and analysis, I

decided against relying this oversimplified metric.

• Secondly, I decided to compare the fine-tuned Curie (without conducting any

few-shot learning) against all other versions, to be able to get a simple 1-vs-1

comparison (Tables 4.2, 4.4, & 4.6). Here, for each data point (which was the

rating of a specific room/character/object by a specific annotator) the ratings

of a pair of descriptions was compared to each other. More specifically, when

the original description and the one with fine-tuned Curie was being considered,

there was a very simple comparison conducted: was the rating of one higher than

the other? Then, the cases where fine-tuned Curie was rated higher vs when it

was rated lower and finally when it was rated equally were counted and divided

over the overall count to arrive at a percentage for each case.

In the case of the room dataset, the results (Table 4.1) were somewhat surprising

and unexpected. For example, the number of 5 ratings were the exact same for the

original description and the one generated by Babbage, which was included in the
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Rooms
Sum Original Davinci

with few-
shot learn-
ing

Fine-tuned
Curie

Fine-tuned
Curie with
few-shot
learning

Babbage
with few-
shot learn-
ing

1 11 6 125 31 22
2 45 49 63 64 67
3 135 123 68 127 126
4 139 168 93 123 115
5 130 114 111 115 130

Table 4.1: [Number of 1-5 ratings received for each model in the room dataset]

analysis as a control model. Even more surprising and disappointing was the fact that

Davinci and Fine-tuned Curie with few-shot learning performed worse than the original

and Babbage and Fine-tuned Curie without few-shot learning scored even lower on the

number of 5 ratings received.

Therefore, I decided to conduct the second analysis, where pairs of descriptions

were compared to each other individually, rather than look at all descriptions at once

(Table 4.2). Through this analysis, I found that fine-tuned Curie performed worse

against all 4 other descriptions. However, what was different in this metric is that

the original version as well as the Davinci-generated descriptions performed strongest

against Fine-tuned Curie. Both Babbage and Fine-tuned Curie with few-shot learning

were slightly weaker according to this metric, however they were still stronger than

Fine-tuned Curie itself.

For characters, I was able to observe slightly different results (Table 4.3). When

the number of 5 ratings were observed, Davinci performed stronger than any of its

counterparts. Fine-tuned Curie with few-shot learning and Babbage surprisingly per-

formed similarly, with Fine-tuned Curie still lagging behind. Surprisingly, the original

description received the least number of the highest ratings.
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Rooms
metric Original vs

Curie
Davinci vs
Curie

Curie w/
few-shot vs
Curie

Babbage vs
Curie

fine-tuned
Curie better

27.61 27.83 33.26 29.78

other model
better

52.61 50 46.52 46.96

equal 19.78 22.17 20.22 23.26

Table 4.2: [Percentages representing when the observed model (fine-tuned Curie) per-
forms better, worse or equal]

Characters
Sum Original Davinci with

few-shot
learning

Fine-tuned
Curie

Fine-tuned
Curie with few-
shot learning

Babbage
with few-
shot learning

1 36 26 44 40 55
2 65 70 67 62 73
3 91 81 83 90 72
4 97 83 84 80 74
5 61 90 72 78 76

Table 4.3: [Number of 1-5 ratings received for each model in the character dataset]

Similarly to the rooms dataset, a comparison-analysis was also conducted for char-

acters and got slightly more promising results (Table 4.4). To be more specific, Fine-

tuned Curie performed better than both the original description and Babbage, the

control model.

This improvement and the fact that the results resemble the expected results better

can be attributed to the fact that for characters, there were about 3 times more training

samples to fine-tune the model with than in the case of rooms.

Furthermore, Fine-tuned Curie performed comparatively to both Davinci and Fine-

tuned Curie with few-shot learning, albeit still under-performing when compared to
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Characters
metric Original vs

Curie
Davinci vs
Curie

Curie w/
few-shot vs
Curie

Babbage vs
Curie

fine-tuned
Curie better

36.57 33.43 32 38.57

other model
better

34.29 39.43 34.86 33.71

equal 29.14 27.14 33.14 27.71

Table 4.4: [Percentages representing when the observed model (fine-tuned Curie) per-
forms better, worse or equal]

those.

Objects
Sum Original Davinci with

few-shot
learning

Fine-tuned
Curie

Fine-tuned
Curie with few-
shot learning

Babbage
with few-
shot learning

1 36 26 44 40 55
2 65 70 67 62 73
3 91 81 83 90 72
4 97 83 84 80 74
5 61 90 72 78 76

Table 4.5: [Number of 1-5 ratings received for each model in the object dataset]

Since the object dataset (Tables 4.5 & 4.6) included the most training samples

available for fine-tuning (6 times as much as in the case of rooms) it was expected

that object-fine-tuned Curie would perform best out of the three experiments that was

conducted in this portion of the thesis.

Fittingly, even though the original description received the highest number of 5

ratings, the second highest count for 5 ratings went to Fine-tuned Curie. Compared

to these two, Davinci, Fine-tuned Curie with few-shot learning as well as Babbage

underperformed.
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Objects
metric Original vs

Curie
Davinci vs
Curie

Curie w/
few-shot vs
Curie

Babbage vs
Curie

fine-tuned
Curie better

27.27 47.88 51.21 52.12

other model
better

39.39 22.73 22.12 23.03

equal 33.33 29.39 26.67 24.85

Table 4.6: [Percentages representing when the observed model (fine-tuned Curie) per-
forms better, worse or equal]

However, after looking at the other metric and way of analyzing, the results seemed

even more promising. To be more precise, Fine-tuned Curie outperformed all other

available options. It did significantly better than the control model Babbage, the Fine-

tuned Curie with few-shot examples as well as Davinci. Though when compared to

the original, human-written descriptions the difference was not nearly as big, it still

confidently outperformed this version, as well.

4.6 Examples

Let’s look at some of the best-rated (Table 4.7) and worst-rated (Table 4.8) room

descriptions (overall) below:
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Old Queen Farm

Engine Generated description rating

Original Once a fairly profitable farm, the Old Queen Farm is now

a deteriorated old shack surrounded by uninhabitable fields

with soil incapable of growing even weeds. The farm house

shows signs that is being occupied by wild animals, and the

roof is beginning to cave inwards.

5

Davinci

with

few-

shot

learning

The Old Queen Farm is a dilapidated farmhouse with a tiny

little garden. It has a barn and stables for animals. It has a

long driveway and meadow behind it. The farm has been va-

cant for over a year, but the grass hasn’t grown in the meadow

or by the house or by the barn or stables, because of some

magic that keeps it from growing. The house is empty but

perfectly clean, because it’s being maintained by magic.

4

Fine-

tuned

Curie

without

few-

shot

learning

The old queen farm is a large, grassy field that is surrounded

by several oak trees. There are two large, open barns on

opposite sides of the field. The old wooden fence is beginning

to show signs of age and wear.

5
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Old Queen Farm

Engine Generated description rating

Fine-

tuned

Curie

with

few-

shot

learning

This farm has been in the family for many generations and is

very well known. The farm is enormous, stretching as far as

the eye can see. It’s barns are huge and full of every imagin-

able animal, and there are wagons with supplies coming and

going all day. The fields are green with growing crops and

cows grazing. There is a huge castle in the distance, but it

seems to be out of place here.

5

Babbage This farm is the oldest one in the kingdom. It’s run by the

queen and her butler, a former soldier who has been trans-

formed into a servant. The queen and her new assistant, the

butler, are constantly arguing about what to do with it.

5

Table 4.7: [Description generated by each model for Apple trees, which received one of
the highest overall scores]

Apple trees

Engine Generated description rating

Original the apple trees are a beautiful color and very nice to look at

they are easy on the eyes and attract visitors as a result

2

Davinci

with

few-

shot

learning

The apples are ripe and red, ready to be plucked by the lucky

who find them.

1
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Apple trees

Engine Generated description rating

Fine-

tuned

Curie

without

few-

shot

learning

lined the outside of the orchard. The apples were red and

yellow and orange. Delicious smells filled the air.

3

Fine-

tuned

Curie

with

few-

shot

learning

The trees are old, but young in comparison to the people who

love them.

1

Babbage The apple tree is not right next to a field of apple trees, nor

is it in a forest. The apple trees are clear in the distance, but

not close enough for the apples to be easily picked.

2

Table 4.8: [Description generated by each model for Apple trees, which received one of
the lowest overall scores]

Upon analyzing these two examples, one difference that stands out instantly is that

the longer and more elaborate description was the one that received one of the highest

ratings whereas the description with the lowest rating received some of the lowest. This

begged the question whether the length of descriptions are a good indicator for human
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ratings for descriptions, which can be seen in Figure 4.1. Here, a very slight positive

correlation can be observed between the length and the ratings.

Figure 4.1: Scatterplot to compare ratings against length of descriptions

4.7 Discussion on Fine-Tuning Experiments

Overall, the results upon fine-tuning Curie with different sizes of training datasets,

it can be concluded that the larger the dataset is, the more understanding the model

will gain about the task and the higher its performance will be, more specifically the

rooms, characters and objects training dataset was 500, 1500 and 3000 respectfully

which clearly showed in the results, as well.

40



Chapter 5

Generating Item Attributes with

Curie

5.1 Task

In this section of the thesis, we will focus on creating item attributes for the text-

adventure games, by narrowing our focus on the objects dataset. We continue to use

OpenAI’s GPT-3 for this part of the thesis, since a high level of language understanding

is needed for the model to comprehend the name and description pairs (the input) and

generate appropriate binary labels (the output).

5.2 Natural vs non-Natural Language

Another aspect for generating text was the aspect of prompt-engineering. First

and foremost, the importance of prompt engineering was inspected, specifically the

theory that OpenAI’s GPT-3 performs best when the prompt is formulated in natural

language rather than in “computer language” due to the fact that the model itself was
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trained on a massive amount of natural language. To demonstrate what this thesis

considers as natural language vs computer language, the reader should consider the

following: "This is not a weapon." vs "is weapon = False". Furthermore, the

original dataset included attributes that were called is gettable which is difficult for

a language model generated with natural language to understand, since the words are

not common or necessarily even exist in any other context in the English language.

5.3 Models

To generate binary attributes for rooms/categories, characters and objects, two

separate models were called to test the difference between their abilities. These two

were namely Curie and Davinci. Before diving into the details of the difference be-

tween their performances, there are already some aspects to consider, there clearly are

advantages and disadvantages to both of these versions of GPT-3:

• Curie is a rather powerful and still very fast model. Even though its strength is

not necessarily understanding complicated text, it should be perfectly capable of

understanding the basic description of an object/character or room and assign

an appropriate attribute to it, or better yet, decide if it has the specific attribute.

Specifically, Curie is remarkably great at summarization which is why good results

are expected from this engine.

• Davinci, however, is the most advanced and powerful model by OpenAI’s GPT-

3. This engine is a great choice for tasks and application that require a lot

of understanding of the content. It is important to note that Davinci is an

especially great option because it needs less instruction. However, some of the

cons to consider are the facts that it is slower than Curie and also much more

expensive. Since the experiment requires a lot of attribute generation, I had to
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be mindful of the costs during the writing of the thesis such that the costs would

not add up too much by calling the OpenAI API with the Davinci engine.

5.4 Attributes

To generate attributes, the first experiment that was conducted was to generate all

attributes at once. These included for the object dataset:

• is_verbatim

• is_drink

• is_food

• is_gettable

• is_plural

• is_surface

• is_weapon

• is_wearable

However, the initial results were poor, in that after inputting few-shot examples

into the OpenAI API call, the model did not succeed in generating all expected at-

tributes in the expected format. Due to this, this thesis focused on generating item

attributes one at a time and conduct a binary analysis upon generating these.

Next, it was important to change the attribute names into appropriate natural

language texts, as per the reasoning in the section above. In order to fit this, the

attributes were changed the following way, in the order of appearance above:
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• This object contains other objects / This object does not contain other objects

• This is a drink / This is not a drink

• This is food / This is not food

• This object can be picked up / This object cannot be picked up

• There are multiples of this object / There is only one of this object.

• This is a surface / This is not a surface

• This is a weapon / This is not a weapon

• This can be worn / This cannot be worn

5.5 Objective Evaluation

Finally, the generated attributes were to be evaluated to analyze the engines’ per-

formance, as well as the effectiveness of the above mentioned prompt engineering.

For each attribute, few-shot learning was utilized when calling the OpenAI API

with both the Davinci and Curie engines.

Upon generating attributes, true positives, false positives, true negatives and false

negatives were added up individually. With the help of these numbers, the recall,

precision and recall could easily be calculated the following way:

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• Accuracy = TP+TN
TP+FP+FN+TN
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food
metric Curie Davinci Majority class

baseline

precision 3.25 2.63 0.0
recall 80 80 N/Aa

accuracy 48.28 26.96 41.6

Table 5.1: [Results of predicting the binary food attribute by Curie and Davinci]

aSince there were no true positive or false negatives, division by zero occurs when calculating recall

weapon
metric natural language non-natural

language
Majority class
baseline

precision 23.26 16.47 0.0
recall 54.05 100 N/Aa

accuracy 64.68 16.47 94.83

Table 5.2: [Results of predicting weapon attribute w/ natural vs non-natural language]

aSince there were no true positive or false negatives, division by zero occurs when calculating recall

where TP and TN stand for True Positive and True Negative, respectively, and FP

and FN stand for False Positive and False Negative, respectively.

The difference between the two engines is clear after analyzing the results for the

food attribute (Table 5.1). Davinci performs better in predicting item attributes.

However, the difference might not be significant enough to counteract the fact that not

only is Davinci slower, but much more expensive than Curie, as well.

Furthermore, it is very important to note the difference between results when the

engine is given text in natural language vs in non-natural language. More specifically,

numerically the difference in the case of the weapon attribute can be found in Table

5.2.

Obviously, the difference is very significant, highlighting the importance of using
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natural language, which was conducted with the rest of the attributes in this thesis, as

well. The reason why natural language performs worse in terms of recall (29 percent)

compared to non-natural language (100 percent) is most likely due to the fact that

the non-natural language model predicted weapon for most of the cases and therefore

did not miss any objects that are truly weapons, whereas the natural language-trained

model made more educated predictions.

5.6 Error Analysis

The first thing that stood out when analysing the results of food in Table 5.3, is

that in both cases, the meat was classified as negative, as in non-food, when in fact

according to commonsense, it is food.

However, after some further exploration, it became clearer what the problem may

be: there are multiple different ’meat’ objects in the dataset, with different descriptions.

Therefore, even though there are some cases where the ’meat’ object was classified

correctly as food, in some cases, due to its description, both Davinci and Curie classified

as negative.

Furthermore it is also interesting to point out that there are very few false negatives

in the case of Davinci, in fact that was only 1 occurrence in around 300 examples. This

could be due to the fact that the model tends to classify objects as food rather than

non-food. This contradicts the fact that it is a skewed dataset, with a much larger

percentage of non-food items than food.

However, for the sake of few-shot learning, both food and non-food items and

their descriptions had to be included. The fact that the models were trained on a

“balanced” training set for an imbalanced test set, could explain this phenomena. It

can be observed from the results in Table 5.4 that when item attributes are generated
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food
classification Curie Davinci

true positive ingredient vegetable
true negative bin Lamp
false positive rack statue
false negative meat meat

Table 5.3: [Classification of food attribute by Curie and Davinci respectively]

weapon
classification natural language non-natural language

true positive rock rock
true negative coin N/A a

false positive treasure chest Lamp
false negative fan sword

Table 5.4: [Classification of weapon attribute using natural vs non-natural language]

athere were no true negatives present

with a model that was given few-shot examples not in natural language, the model tends

to only predict positive classification, in other words, in an overwhelming number of

situations, it predicts that the object is a weapon. This is interesting, especially due to

the fact that most objects are not a weapon, the object dataset is in fact an imbalanced

dataset with most objects being non-weapons. However, the model is unable to gain

that understanding because this information was not given to it in natural language

and is therefore unable to deduce that information.

5.7 Final thoughts on generating attributes

As witnessed by the metrics above, it can be concluded that OpenAI’s GPT-3

though does not necessarily expect natural language, but since it was built with massive
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amounts of natural language, it performs better and the one can unleash its biggest

potential when the prompt is in natural language, as well.

Furthermore, as per my analysis, the difference between the performance of Curie

and Davinci is not that significant to justify the added time and cost of using the

superior engine, Davinci and therefore the thesis concludes that Curie is the best

option for this task.
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Chapter 6

Conclusion and Future Work

Since the publication of OpenAI’s GPT-3, natural language processing has wit-

nessed a revolution in the form of the renaissance of text generation. The technology

has impressed and positively surprised the entire field and its vast array of applica-

tions are still being discovered, one being the fictional text generation, where text-based

adventure games only cover a small portion of this genre.

This thesis explored some of the strategies to perfect prompt engineering as well

as investigated the importance of fine-tuning and few-shot learning. Furthermore,

OpenAI’s engines were put to the test to understand the difference between their

capabilities.

My main findings in this thesis include the following:

1. While Davinci is undoubtedly the most advanced and most powerful engine of

OpenAI’s GPT-3 model, with sufficient fine-tuning or few-shot learning, Curie

could rise up to the level of Davinci for a specific task. Furthermore, Curie is

much more cost-efficient which is an important factor to consider when working

with large amounts of data. It is also important to mention that so far (as of

December 2021), pre-training Davinci was not available through OpenAI’s API.
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2. Prompt engineering is crucial when using both fine-tuning and few-shot learning

methods.

(a) In Chapter 4, the thesis explained how formatting the fine-tuning and few-

shot learning examples was crucial in making sure that the model generates

in the appropriate format, in the expected length and style.

(b) As demonstrated in Chapter 5, since GPT-3 was trained on massive amounts

of natural language data, it is what the model expects and performs best

with.

3. It also became clear through the error analysis in Chapter 5, that having a

similarly balanced training and test set is beneficial in achieving the expected

results. It is unrealistic to expect good results when training on a balanced

dataset and testing on an imbalanced one.

4. As discussed at length in Chapter 2, creative fictional writing requires a deep

understanding of the given world. This can be achieved by fine-tuning, due to

which Fine-tuned Curie performed so well during description generation.

Some of the future work related to this thesis could explore the following:

1. In the case of description generation, there could be different scales for different

attributes of each description during evaluation, such as: “description is stylisti-

cally very bad, bad, average, good or excellent”.

2. Furthermore, instead of only asking about the “quality” of the description in

some abstract sense the annotators could be asked questions in the realm of:

(a) How accurate is this description?

(b) How close does it actually represent the real thing being described
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(c) How much does this description make you want to continue to play the game

or ask more questions to the system?

(d) How intriguing is this description?

(e) How detailed is this description? (sometimes one option scored lower, be-

cause it messed up a detail but another option was given lower score because

it didn’t give any.)

Contrary to Phil Goetz’s 1992 prediction, generating Text-based Adventure games is

not only possible less than 30 years later, but flourishing.

This work demonstrated ways that could provide support to text adventure game

developers, or even replace them in the future. Natural Language Processing and more

importantly the branch of fictional text generation is developing and making strides

faster than ever and it is my utmost pleasure that I could become a tiny part of this

revolution.
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