
Machine Transliteration

Devanshu Jain

A Thesis

in

Department

For the Graduate Group in Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Master of Science in Engineering

2018

Supervisor of Thesis

Dr. Chris Callison-Burch, Professor, University of Pennsylvania

Reader of Thesis

Dr. Dan Roth, Professor, University of Pennsylvania

Graduate Group Chairperson

Dr. Boon Thau Loo, Professor, University of Pennsylvania



Machine Transliteration

© COPYRIGHT

2018

Devanshu Jain

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/



Contents

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1 : Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 : Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Phoneme-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Grapheme-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Hybrid-models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Machine Transliteration in Low Resource Settings . . . . . . . . . . . . . . 11

CHAPTER 3 : Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 4 : Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



4.4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 5 : Bi-Lingual Lexicon Induction . . . . . . . . . . . . . . . . . . . . . 25

5.1 Learning Translations via Matrix Completion . . . . . . . . . . . . . . . . . 25

5.2 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 6 : When to translate vs transliterate? . . . . . . . . . . . . . . . . . . 34

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

CHAPTER 7 : Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



List of Tables

TABLE 1 : Experiment 1: original data results . . . . . . . . . . . . . . . . . . 17

TABLE 2 : Experiment 2: Wikipedia backlinks augmented data at threshold 30% 18

TABLE 3 : Experiment 2: Wikipedia backlinks augmented data at threshold 40% 19

TABLE 4 : Experiment 2: Wikipedia backlinks augmented data at threshold 50% 19

TABLE 5 : Experiment 2: Wikipedia backlinks augmented data at threshold 60% 20

TABLE 6 : Experiment 3: Same script augmented data . . . . . . . . . . . . . 21

TABLE 7 : Experiment 4: Compositional Transliteration . . . . . . . . . . . . 22

TABLE 8 : Experiment 5: Hindi-origin words (using Regex) . . . . . . . . . . . 23

TABLE 9 : Experiment 5: English-origin words (using Regex) . . . . . . . . . . 24

TABLE 10 : Experiment 5: Hindi-origin words (using Wikidata) . . . . . . . . . 24

TABLE 11 : Experiment 5: English-origin words (using Wikidata) . . . . . . . . 24

TABLE 12 : Identifying when to transliterate a word in the sentence . . . . . . 36

iv



List of Figures

FIGURE 1 : Hindi - English pronunciation . . . . . . . . . . . . . . . . . . . . 3

FIGURE 2 : English backlink data Levenshtein distances . . . . . . . . . . . . 19

FIGURE 3 : Hindi backlink data Levenshtein distances . . . . . . . . . . . . . 20

FIGURE 4 : Hindi-Urdu Bi-Lingual Lexicon Induction using Urdu as pivot lan-

guage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

FIGURE 5 : Adding transliterations (translit) as signals for completing the

translation matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

FIGURE 6 : Top-10 accuracy for Hindi (hi), Bengali (bn), Telugu (te), Tamil

(ta), Nepali (ne), Ukranian (uk), Bulgarian (bg) and Siberian (sr)

to English Translation . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



ACKNOWLEDGEMENT

I would like to thank Derry Wijaya and Chris Callison-Burch for their advice throughout

the supervision of this project.

vi



ABSTRACT

Machine Transliteration

Devanshu Jain

Dr. Chris Callison-Burch

Machine Transliteration is the process phonetic translation of a word across different scripts.

This is an important and significant task in the field of Natural Language Processing, par-

ticularly because of the value it adds to many downstream applications such as Machine

Translation, Entity Discovery, Information Retrieval in the context of multilingualism. This

is also a difficult task, from the perspective of machine learning especially due to lack of

high-quality training data. In this study, we treat the problem as a monotonic Statisti-

cal Machine Translation problem and perform various experiments to improve the results

in a low resource environment. Furthermore, we incorporate this method in the Matrix

Completion framework for Bi-Lingual Lexicon Induction by Wijaya et al. (2017).
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CHAPTER 1 : Introduction

Machine Transliteration is the process of phonetic translation of a word across different

scripts. When a word is translated from its native script to foreign script, then it is called

forward transliteration. On the other hand, when it is translated from a foreign script back

to its native script, then it is called backward transliteration. For example,

औषधालय → Aushdhalaya (forward transliteration)

फामेर्सी → Pharmacy (backward transliteration)

With growing multilingualism, machine transliteration plays an important role in many

downstream applications. One such example is Machine Translation Systems. Almost al-

ways, named entities (such as names, addresses, technical terms, festivals, etc.) are translit-

erated while generating annotated parallel corpora. Sometimes, there are no words in the

target language corresponding to a word in the source language. Here, machine translitera-

tion proves to be an important module to improve the performance of machine translation.

Another application is Cross Lingual Information Retrieval (CLIR) Systems. Many of the

search engines do not consider transliterated content while responding to a query. It can be

observed that the same query (for example, song lyrics) returns significantly different results

when submitted to a search engine in a transliterated form. In such cases, transliteration

system can help improve the recall.

An interesting human behaviour is also observed on websites such as Facebook, Twitter, etc.

which are sources for a lot of user generated content. A lot of these posts/tweets are written

in user’s native language transliterated to Roman Script. Machine Transliteration would

be a useful component for text-based applications such as Question Answering, Sentiment

Analysis, etc.

One of the major challenges in this problem is lack of direct mappings between language’s

phonetic structure. This can lead to ambiguity in forward as well as backward translitera-
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tions. Once can find many such ambiguities in fig.1. For example, there are some Devanagari

alphabets (like फ ) that can map to two different combinations of Roman alphabets (pha,

fa). Therefore

फाटक → phatak, fatak

Also, there are some cases where Roman script cannot differentiate between different De-

venagari alphabets. For example, the Devanagari alphabets ( त , ट ) map to the same

combination of Roman alphabets (ta)

टमाटर → tamatar

tamatar → टमाटर , तमातर

.

This ambiguity can also result from other factors. As Huang (2005) pointed out, source of

origin of the word plays an important role in producing the transliterations.

Transliterating to English is different from Romanization, which is a more deterministic

process. In Romanization, we look up the pronunciation table and substitute characters.

For example, using figure 11, we can produce the romanization as follows. We can see that

romanized output is very different from the transliterated output.

Input: ऐंजेला

Romanized Output: ainjela

Transliterated Output: Angela

.

1.1. Contributions

In this study, we treat the problem of Machine Transliteration as a monotonic Machine

Translation problem by treating each symbol as a word in itself. The above mentioned
1http://www.lingvozone.com/Hindi
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Figure 1: Hindi - English pronunciation
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ambiguities can lead to the system learning various rules, all of which are correct but may

introduce test error. Thus, we need an appropriate performance measure that takes into

account the partial correctness of transliteration process. Since there is a lack of high

quality training data which hurdles the creation of accurate models, we perform various

experiments that can possibly help alleviate this problem.

We also use our Machine Transliteration system for the task of improving translation via

matrix completion. Translation via matrix completion Wijaya et al. (2017) is a new method

for learning translations for low resource language pairs. Typically machine translation relies

on large volume of bi-lingual parallel text, but matrix completion provides a framework for

machine translations using only a small bi-lingual dictionary. We examine the question of

whether knowing transliteration and name pairs can improve the translations acquired via

matrix completion.

1.2. Document Structure

The rest of the theses is organised as follows. Chapter 2 comprises of literature review and

describes some of the related work done in the field of machine transliteration. In Chapter

3, we describe our machine transliteration system and how it is treated as a translation

problem. In Chapter 4, we describe the Bi-Lingual Lexicon Induction task and the matrix

completion framework by Wijaya et al. (2017). Then, we explain the integration of our

machine transliteration system to the framework. Chapter 5 describes the experiments and

results conducted by the authors. It begins with describing the experiments for machine

transliteration and then goes over the results and its analysis for transliteration as well as

for bi-lingual lexicon induction. In Chapter 6, we present our conclusion and provides some

possible future work.
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CHAPTER 2 : Literature Review

In this chapter, we provide some of the work that has already been done for machine

transliteration. After reviewing the literature, we can broadly classify the techniques into

three major categories:

• Phoneme-based Methods

• Grapheme-based Methods

• Hybrid Methods

In each of the next three sections, we give a broad overview of work that use these methods.

2.1. Phoneme-based Methods

A major work on the task of Statistical Machine Transliteration was done by Knight and

Graehl (1998). They modelled the process of back-transliteration from Japanese (Katakana)

to English as a generative process. They identified 5 sub-modules as follows:

1. English phrase is written

2. A translator pronounces it in English

3. The pronunciation is modified into the Japanese phonetic system

4. The sounds are written into Katakana, which is a special phonetic alphabet used to

write loanwords

5. Katakana is written

Then, they model each of these sub-modules using the following probability distributions:

1. P(w) to model the generation of (scored) English phrases

2. P(e | w) to model the generation of English phonemes from the graphemes

5



3. P(j | e) to model the generation of Japanese phonemes from English phonemes

4. P(k | j) to model the generation of Katakan graphemes from Japanese phonemes

5. P(o | k) to model the misspellings caused by optical character recognition

They model each of these process using Weighted Finite State Machines. They used Accep-

tors for the first task and transducers for the rest. They modelled P(w) using simple unigram

scoring method multiplying the scores of known words in the phrase. They used 262,000

frequency list from the Wall Street Journal (WSJ) corpus. They used CMU Pronunciation

Dictionary to create the Transducer for P(e | w). They learnt the transducer for modelling

P(j | e) using an Expectation-Maximization algorithm to generate symbol-mapping prob-

abilities. They manually constructed two transducer for P(k | j) - to merge long Japanese

vowel sounds to new symbols and then to map the Japanese sounds to Katakana characters.

They view Optical Character Recognition as a channel that introduces noise to the gold

katakana sequences. They learnt the transducer using another Expectation-Maximization

algorithm.

So, given a Katakana string o, they find the English word as follows:

w = argmaxŵ
∑
e,j,k

P (ŵ)P (e|ŵ)P (j|e)P (k|j)P (o|k)

They used the cascade in reverse by using Bayes’ rule to get the English phrases from the

Katakana phrases. For inference, they used Dijkstra’s shortest-path algorithm. To generate,

k-best transliterations, they also used Eppstein’s k-shortest-path algorithm.

Later, Stalls and Knight (1998) extended this model to learn back-transliteration from

Arabic to English, making some changes. Since the first two modules only used English,

they were just used directly. Instead of modelling English phonemes to Japanese phonemes
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and then to Katakana graphemes as a 2-level process, they integrate these steps. That is,

they directly model the process of converting English pronunciation to Arabic characters.

Due to the lack of a large English-Arabic dictionary at the time, they manually created

a small 150 words dictionary and used English pronunciation dictionary to get mappings

from English pronunciations to Arabic words. They used an Expectation-Maximization

algorithm to learn the mappings from English phonemes to Arabic graphemes.

Meng et al. (2001) presented an English-Chinese transliteration. Following a phoneme-based

approach, they translated the English phrases to phonemes. Since Chinese is monosyllabic

in nature while English is not, they identify and apply some phonological rules to transform

these pronunciations. Then, they learn phoneme alignments between English and Chinese

using Weighted Finite State Transducers. They also compared the generated Chinese pro-

nunciations with the references to create a confusion matrix. They used this confusion

matrix to generate a lattice structure where each syllable has alternates which were deter-

mined using the statistics from the confusion matrix. Finally, they used a bi-gram syllable

level language model to decode the Chinese word from these pronunciations.

Jung et al. (2000) built an English to Korean transliteration system. They used Oxford

computer-usable dictionary to generate English pronunciations from words. To generate

the most probable Korean word from this representation, they used a probabilistic tagger.

Instead of using conventional markov window of size 2, they used a window of size 4 to use

as contextual information to train the tagger. For inference, they used Viterbi algorithm

to generate k-best transliterations.

Virga and Khudanpur (2003) built a phoneme-based English-Chinese transliteration sys-

tem. They convert English words to pronunciations, deterministically using a dictionary.

They translate English phonemes to syllabic units using traditional Source Channel models

usually used in Statistical Machine Translation. Then, they convert these syllabic sequences

into pin-yin symbols, which are then translated to character sequences. Unlike other works,

which use accuracy as a metric to measure the performance of their transliteration system,
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they used an extrinsic evaluation by testing their transliteration system for cross-lingual

spoken document retrieval.

2.2. Grapheme-based Methods

The phoneme-based methods of transliterations correctly model the transliterator in the way

that transliteration utilizes the phonetic representation of words while translating symbols.

However, these methods have severe disadvantages as well. As Al-Onaizan and Knight

(2002) point out, a major drawback is the generation of pronunciations. Assuming the

source to be English language, pronunciation can be generated for well-known English

words but for words whose origin is a foreign language, the pronunciation may not be

always accurate. Also, due to various intermediary steps involved in the phoneme-based

methods, the error propagates through the pipeline which adversely affects the final results.

Furthermore, there are cases when words are transliterated based on their spelling in the

source language. In such cases, a spelling based model would be more useful.

This has encouraged people to look into grapheme-based methods which directly trans-

late between scripts without going through the process of modelling pronunciation. Kang

and Choi (2000) follow such a method to learn transliterations from English to Korean.

They learn the alignments between English and Korean symbols using a modified Coving-

ton’s alignment algorithm. Covington’s algorithm used match and skip operations on each

step while stepping through the words. It only produced one-to-one alignments. However,

Korean-English transliteration has many-to-many correspondence. To take this into ac-

count, they introduced a bind operation. After learning the alignments, they generated a

training set to predict the English symbol(s) using the neighbouring characters in a window

of size 6 (3 left and 3 right). They learnt 26 decision trees - for each English alphabet. To

infer the Korean transliteration for an English word, they step through the word and use

the corresponding decision tree to generate the corresponding Korean symbol. The final

string is the concatenation of these symbols. To prevent the decision trees from overfitting,

they used the post-pruning method (reduced error pruning). This method can be used to
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generate transliteration in either direction.

AbdulJaleel and Larkey (2002) also use a grapheme-based approach to learn transliterations

from English to Arabic. First, they use GIZA++ to learn alignments between English and

Arabic words. Whenever an Arabic symbol is aligned with multiple English symbols, the

English symbol sequence is added to the English alphabet and the English words are re-

segmented. Alignment model is re-trained on this new dataset (with re-segmented English

words). Conditional probabilities are calculated based on the alignment counts. To infer

the Arabic words, each English word is re-segmented as above and alignment model is used

to infer all possible transliterations. These transliterations are scored by the product of

alignment probabilities and an Arabic conditional character-level bi-gram model. Pingali

et al. (2008) learn English to Hindi transliteration system using a similar approach. How-

ever, instead of using simple count to calculate probabilities, they use Conditional Random

Field. For each aligned symbol pair, they generate features which consisted of neighbouring

English alphabets in a window of 5 characters.

Haizhou et al. (2004) used the grapheme-based approach to learn English-Chinese translit-

eration. Instead of learning in any particular direction, they learn a joint model, that is,

how source and target words can be generated simultaneously. First, they learn alignments

between English and Chinese words using an Expectation-Maximization algorithm. Then,

for each word pair (E,C), they identify each aligned symbol pairing as a transliteration unit.

They learn a n-gram transliteration model as the conditional probability of a transliteration

unit given the n immediate predecessor pairs. The probability of the word pair (E,C) is the

product of probability of each of its transliteration units as calculated by this model. These

joint probability distribution can be easily marginalized to calculate conditional distribution

for transliteration in both the directions.

In 2009, Named Entities Workshop (NEWS) introduced a Machine Transliteration task.

The organizers provided standard dataset for various language pairs like English-Hindi,

English-Hebrew, Chinese-English, Arabic-English, etc. Many of the participating teams
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used neural network to learn the target transliterations. Looking at the participating teams,

it seems that neural networks are becoming more predominant for solving the machine

transliteration task and they consistently outperform the phrase-based machine translation

systems. NICT’s submission (Finch et al. (2016)) was the best performing team in 2016

version of the task. They trained a LSTM-based RNN to encode the input sequence to

a hidden representation and decode that representation to produce the output sequence.

It has been observed that since the errors accumulate while decoding, the transliteration

quality of the suffixes degrades. To fix this, they used target-bidirectional models which

learn to generate the target from left to right and from right to left producing 2 k-best lists.

Then, they learn an agreement model to combine them. They used ensembles of such neural

networks to generate the transliterations by linearly interpolating (with equal weights) the

probability distributions over the target vocabulary during beam-search decoding process.

2.3. Hybrid-models

Al-Onaizan and Knight (2002) extended their previous phoneme-based models to develop

a hybrid approach. They developed a grapheme-based model that was integrated with a

phoneme-based model to learn Arabic-English transliterations. They learn grapheme and

phoneme based discriminative models to learn the P (w|a), the probability of w (english

word) being the transliteration of a (arabic word). Then, they linearly interpolate these

scores to generate the final score for the transliteration. Inference is done by searching for

the English word that maximises this final score. They also performed some additional post-

processing to improve their final results. First, they created another Finite State Machine

to correct the misspellings. The weights of this machine were set manually as enough

misspelling training data was not present to tune the parameters empirically. Furthermore,

the outputs from spelling based model were discarded which had 0 web counts.
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2.4. Machine Transliteration in Low Resource Settings

Most of the approaches described required extensive training data and other linguistic re-

sources (for phoneme based approaches) which may not be readily available for low-resource

languages. This section describes the work undertaken to solve the task of transliteration

in a low-resource setting.

Chinnakotla and Damani (2009) focused on general transliteration (forward/backward ag-

nostic) in a low-resource setting. They built their system for transliterating between Hindi

and English languages. They employed hand-written character mappings for converting

each Hindi word to an English word and vice-versa. Using these individual character map-

pings, they generate an unordered list of target candidates. They also trained a Character-

Level Language Model using massively available monolingual resources for both the lan-

guages and used the language model probability to re-rank the candidate list. To resolve

the bias towards shorter words, they augmented the target language’s alphabets with com-

mon digraphs, double letters, etc.

Kumaran et al. (2010) built a language-independent general transliteration system. They

used a Conditional Random Field (CRF) model to learn transliteration between languages.

For their experiments, they focused on Indian languages and English. As a preprocessing

step, they trained a Character-Level Language Model for Indian origin languages collectively

as well as English language. Then, they trained a classifier to classify the input words as

originating from Indian language or not. Then, they separated the training data using

this classifier and trained a CRF based transliteration model for each class. They also

experimented with compositional transliteration to account for the cases when no direct

data is available for learning transliteration from one language to another. An intermediate

language was chosen and two separate CRF models were learnt for (source→ intermediate)

and (intermediate → target). Considering that this makes transliteration process noisier,

the top-1 accuracy dropped only by less than 10% as compared to the direct transliteration

modelling. They also experimented with combining the transliteration score from the direct

11



transliteration and compositional transliteration for the final system output. This increased

their top-1 accuracy by 8% relative to the direct transliterations.

12



CHAPTER 3 : Approach

3.1. Methodology

For this project, we treated machine transliteration as a Hierarchial Phrase-based machine

translation task. We treat words as sentences and characters as words. We employ Sta-

tistical Machine Translation tools to learn the transliterations. The transliteration task is

much simpler than translation in principle - In translation, the phrases can be reordered in

the target language, however, character sequences are always monotonic in transliteration.

3.2. Data

Irvine et al. (2010) used data comprising of named-pairs extracted from Wikipedia ar-

ticles. Wikipedia maintains links between articles written in different languages. They

assumed that person named-entities are mostly transliterated rather than translated from

their canonical language to the target language. They mined English Wikipedia category

pages like: “1961 births” to get a list of people who were born or died in years ranging

from 0 to 2010. They made use of such listings and the language links associated with each

person to create data consisting of people names in various languages. Data was collected

for approximately 200 languages.

Data was further cleaned for use. Some titles were not consistently transliterated. Rea-

sons for this included abbreviations (A.P.J. Abdul Kalam in Roman written as Abul Pakir

Jainulabdeen Abdul Kalam in Devanagari). Another reason was that sometimes, middle

name was omitted during transliteration i.e. Abbot Suger in Roman was written as Suger

in Russian. They computed word-alignments for the data and chose a threshold score for

removing the extreme cases of such occurrences.

We have used the same data for our experiments as well. Particularly, we use the language

pair Hindi-English. Hindi is written in Devanagari script and English is written in Roman

script. The data comprised of approximately 10,287 pairs.
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3.3. Tool

For our study, we used Joshua Li et al. (2009) tool. A step-by-step process of training and

decoding is described as follows:

1. Data preprocessing: The parallel training data consists of words written in different

scripts per line. Each such word is processed by lower-casing the characters and

replacing the spaces with special character: underscore (‘_’). The resulting word is

then represented as space separated list of characters.

2. Creating alignments: We used Berkeley aligner to create alignments between the

source and the target language. We trained 2 IBM model 1s jointly - one for each

direction for 5 iterations and used these parameters to initialize HMM alignment

model.

3. Training language model: We used Berkeley LM to create a Language model of

order-8 for the source and target languages.

4. Extracting grammar: We used ‘Thrax’ to extract translation grammar rules using

the alignment model created above along with their feature function scores.

5. Training: We used Joshua’s Minimum Error Rate Training (MERT) to learn the

weights of the features for the translation grammar rules extracted above.

6. Decoding test sentences: Given the grammar rules and the source sentence, s in

the test set, we used Joshua’s decoding algorithm (based on Chart Parsing) to find

k-best derivations <s, t> where t is the sentence in target language.

3.4. Evaluation Metrics

We used the following evaluation metrics to calculate the system performance following

Duan et al. (2016). Instead of having a list of reference transliteration in the dataset

(which is assumed by Duan et al. (2016)), we only have 1 reference transliteration. The

14



evaluation formulae are simplified according to this. Here, N is the number of datapoints.

The transliteration system outputs a list of transliterated candidates of length ni for each

word wi. cij is the jth-best transliterated word for word wi. ri is the correct transliteration

(reference) for wi

1. Average Normalised Edit Distance: We calculate standard Levenshtein distance

between two words to calculate the similarity between two words. It measures the

number of insertions, deletions and substitutions we need to make in order to trans-

form one word to another. This measure is then normalised by the length of reference

string and is averaged over the test data.

2. Top-1 Word Accuracy: It measures the proportion of data which produces the cor-

rect transliteration (exact matching) as the top transliterated candidate with respect

to the reference transliteration.

accuracyi =
1

N

N∑
i=1


1 if ri = ci1

0 else

3. Top-K Word Accuracy: It measures the proportion of data which produces the

correct transliteration (exact matching) in the top-k transliterated candidate list with

respect to the reference transliteration.

top k accuracyi =
1

N

N∑
i=1


1 if ∃j : ri = ci,j , 1 ≤ j ≤ k

0 else

4. Top-1 F-Score: The F-score is the harmonic mean of Precision and Recall. Pre-

cision and Recall is calculated using Edit Distance between the top transliterated
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candidate and the reference. Following formulae are calculated:

LCS(c, r) =
1

2
(|c|+ |r| − ED(c, r))

Here, LCS is Least Common Subsequence and ED is the edit distance. Then,

precisioni =
LCS(ci,1, ri)

|ci,1|

recalli =
LCS(ci,1, ri)

|ri|
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CHAPTER 4 : Experiments and Results

We performed the experiments using Monte-Carlo Cross Validation. We randomly sampled

(without replacement) some fraction of the data for training and used the remaining data

for tuning and testing. We repeated this process 10 times.

4.1. Experiment 1

The objective of this experiment was to confirm the hypothesis that the with increase in the

the size of training data, the system performance improves. The Hindi-English data was

divided into 3 parts: training, tuning and testing for each repetition. For each repetition, we

held back 60%, 70%, 80% and 90% data for the training. Then, we used half the remaining

data for tuning and the other half for testing. We calculate the results after averaging

the scores over all the repetitions. The results are presented in table 1. Observe that the

performance improves as the training data increases

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.1934 0.4363 0.4906 0.8619
70% training data 0.1846 0.4658 0.5191 0.8648
80% training data 0.1793 0.4867 0.5413 0.8668
90% training data 0.1723 0.5105 0.5642 0.8698

Table 1: Experiment 1: original data results

4.2. Experiment 2

The previous experiment validates our claim that increasing training data indeed improves

the performance of the system. To build up on that, we tried to extract more data from

Wikipedia. Wikipedia API1 provides the ability to access the backlinks to every every

wikipedia page. Using the data already collected, we used this service to gather the titles

of all wikipedia pages which are linked to these pages. For example, given a page titled

“Barack Obama”, then its backlinks in the English wikipedia consists of pages titled:
1https://en.wikipedia.org/w/api.php?action=query&list=backlinks&bltitle=Barack\

%20Obama&bllimit=5&blfilterredir=redirects
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1. Barak Obama

2. Barack H. Obama

3. Barach Obama

4. Barack Hussein Obama, Jr

5. 44th President of the United States

and so on.

We also extracted the backlink pages for the Hindi wikipedia. We augment the data with

all such name variants. This increases out data set size to approximately 100,000.

However, as can be observed in the above example, this data needs to be cleaned. The

1st, 2nd and 3rd item seems fine for augmenting. The 4th item seems okay but 5th item

should definitely not be augmented in the training data. To analyse the distance between

the original word and the name variants, we calculated the Levenshtein distance between

the variant and the original word and normalised it by the length of the original word. The

histogram of these distances is shown in figures 4.2 and 4.2. We re-run the experiment

1 as before with the augmented data created by using different level of thresholds of the

normalized Levenshtein distance. We used the thresholding levels of 30%, 40%, 50% and

60%. Our hypothesis is that the performance should improve for this augmented data.

The results for all the above thresholds are presented in tables 2, 3, 4 and 5.

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.3525 0.3616 0.4231 0.8560
70% training data 0.3477 0.3846 0.4434 0.8582
80% training data 0.3402 0.4058 0.4655 0.8609
90% training data 0.3494 0.4215 0.4743 0.8596

Table 2: Experiment 2: Wikipedia backlinks augmented data at threshold 30%

As can be observed, the system achieves the best performance when a threshold of 40%
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Figure 2: English backlink data Levenshtein distances

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.3435 0.3697 0.4311 0.8578
70% training data 0.3370 0.3945 0.4552 0.8605
80% training data 0.3296 0.4138 0.4764 0.8632
90% training data 0.3212 0.4442 0.5029 0.8656

Table 3: Experiment 2: Wikipedia backlinks augmented data at threshold 40%

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.3126 0.2956 0.3996 0.8763
70% training data 0.3094 0.3110 0.4188 0.8781
80% training data 0.3030 0.3263 0.4371 0.8801
90% training data 0.3022 0.3516 0.4630 0.8807

Table 4: Experiment 2: Wikipedia backlinks augmented data at threshold 50%
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Figure 3: Hindi backlink data Levenshtein distances

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.3370 0.2211 0.3283 0.8748
70% training data 0.3331 0.2287 0.3407 0.8768
80% training data 0.3322 0.2403 0.3545 0.8783
90% training data 0.3274 0.2432 0.3610 0.8804

Table 5: Experiment 2: Wikipedia backlinks augmented data at threshold 60%

was chosen. However, this performance does not beat the performance of the system which

was trained on the original data (without augmentation). We think that this is because the

name variants add too much noise in the dataset.

We also observe that even though the accuracy metrics show a decline in performance but

the average normalised edit distance is still about the same, which shows that the decoded
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words in the target language are still discernible which is a good sign.

4.3. Experiment 3

Although the experiment of increasing our dataset by using wikipedia backlinks didn’t work

out, but that was mainly because of the noisy data. In this experiment, we tried to augment

our dataset by including data from other languages written in the same script as Hindi:

Devanagari. We created our new dataset by combining the parallel data from languages2

1. Sanskrit-English

2. Marathi-English

3. Bihari-English

4. Nepali-English

5. Hindi-English

The final dataset consists of 27,680 items. The hypothesis here is that accumulating data

from same script will increase the training data and according to the results from the first

experiment, it should improve the system performance significantly. The results from the

experiment are presented in the table 6.

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.1836 0.4798 0.5340 0.8652
70% training data 0.1776 0.5090 0.5607 0.8677
80% training data 0.1716 0.5351 0.5854 0.8702
90% training data 0.1653 0.5549 0.6065 0.8721

Table 6: Experiment 3: Same script augmented data

We observed that the system’s performance improved significantly as compared to the case

when we just used Hindi-English parallel data, thus confirming the hypothesis.
2https://en.wikipedia.org/wiki/Devanagari
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4.4. Experiment 4

In this experiment, we try compositional transliteration, that is, given the source, interme-

diate and target languages (X, Y and Z), we train the transliteration system and create a

model for the pairs: X→Y and Y→Z. Then, for the test set of words in the source language

X, we use the transliteration model for X→Y pair and get the words transliterated in the

intermediate language Y. Then we use the transliteration model for Y→Z pair to get the

words transliterated in the target language.

This might be useful in the cases, where no or very little data exists for a pair of languages

but we can use another language as an intermediate for which parallel data exists for both

the languages and obtain the transliterations. For the purpose of this experiment, we chose

Arabic as our intermediary language for transliteration between Hindi and English. The

experiment for each repetition was created as follows: follows: Some percentage of data for

X→Z was held for testing and the rest of the data along with script Y was used to train 2

different models. The results are presented in the table 7.

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.3787 0.1232 0.1079 0.8077
70% training data 0.3753 0.1244 0.1088 0.8083
80% training data 0.3538 0.1298 0.1171 0.8138
90% training data 0.3340 0.1310 0.1252 0.8187

Table 7: Experiment 4: Compositional Transliteration

We observed that the system’s performance declined significantly from before. But still,

the average normalized edit distance is not significantly bad. The decoded words are still

discernible which might be useful for low-resource languages.

4.5. Experiment 5

Huang (2005) have shown that having the data corresponding to the word’s source of origin

may boost transliteration performance. They do it by using the group-average agglom-
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erative clustering technique to group the data into different classes and then using the

transliteration system on each of those classes. To get the named-entity source of origin

for our data, we first tried to get the entity’s nationality by parsing the original Engish

wikipedia article and using regular expression to parse B from “A is a B” type of structure

in the first sentence. For example, say the sentence is:

Amitabh Bachchan (born 11 October 1942) is an Indian film actor, producer, television

host, and former politician.

Then, the parser will produce ‘Indian’.

We grouped the dataset according to the nationality of entities (since all of the items in

the data set are people’s names). Thereafter, we divided the training data into 2 parts:

those which were Indian and those which were English and then, trained separate models

for them and calculated the performance for each group separately. The hypothesis is

that since geographically-distant languages have a very different structure, the variety of

structure in the training data may make it hard for the learning algorithm to learn the

correct rules. So, we create a group for those items with the nationalities: India, Pakistan,

Bangladesh, Nepali, etc. and another group for items with nationalities: United States,

United Kingdom, Candada, Australia, etc. The results are presented in the table 8 and 9.

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.1641 0.4580 0.5225 0.8728
70% training data 0.1591 0.4786 0.5430 0.8750
80% training data 0.1560 0.4962 0.5590 0.8754
90% training data 0.1643 0.5010 0.5641 0.8739

Table 8: Experiment 5: Hindi-origin words (using Regex)

Next, we used Wikidata API to get more accurate information about the citizenship of the

items. Wikidata provides the country of citizenship3 data as a property for the wikipedia

page titles which can be easily queried. We re-grouped the items as above using this data and
3https://www.wikidata.org/wiki/Property:P27
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Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.1847 0.3573 0.3989 0.8599
70% training data 0.1783 0.3893 0.4322 0.8623
80% training data 0.1707 0.4212 0.4647 0.8646
90% training data 0.1514 0.4654 0.5124 0.8687

Table 9: Experiment 5: English-origin words (using Regex)

re-run the experiment. The new results are presented in the tables 10 and 11. We observe

that although the performance is better for the Hindi-origin group, but the performance

declines for the English-origin group. The main reason for that would be because there is

very less data for English-origin group: 1700 English group versus 5000 Hindi group.

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.1719 0.4867 0.5498 0.8703
70% training data 0.1708 0.5112 0.5704 0.8710
80% training data 0.1722 0.5339 0.5919 0.8719
90% training data 0.1670 0.5674 0.6197 0.8740

Table 10: Experiment 5: Hindi-origin words (using Wikidata)

Average Normalised
Edit Distance Top-1 Accuracy Top-10 Accuracy F-Score

60% training data 0.1962 0.3613 0.4101 0.8598
70% training data 0.1809 0.4062 0.4539 0.8629
80% training data 0.1714 0.4334 0.4816 0.8665
90% training data 0.1688 0.4641 0.5074 0.8673

Table 11: Experiment 5: English-origin words (using Wikidata)
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CHAPTER 5 : Bi-Lingual Lexicon Induction

In this chapter, we experimented with using transliteration to improve Bi-Lingual Lexicon

Induction task. We integrate our approach with Wijaya et al. (2017)’s matrix completion

framework. In the following sections, we describe their framework briefly and then we

describe our experiments with the integration and the results obtained.

5.1. Learning Translations via Matrix Completion

In this section, I will briefly describe the matrix completion framework by Wijaya et al.

(2017) for bi-lingual lexicon induction. They formulate the problem as follows: Given a set

of observed translation between languages F and E, say, T = <f,e>: f ∈ F and e ∈ E, a

word f from F and a set of the target words e: <f, e> ̸∈ T, the objective is to identify the

score xf,e which determines how likely is e a translation of f.

They model this problem as that of completing a matrix X: E × F. They approximate the

matrix X as X̂ = PQT , where P: |F| × k and Q: |E| × k. Each row in P (or Q) can be seen

as a feature vector for the word in language F (or E). They used the Bayesian Personalized

Ranking (BPR) to do this matrix factorization.

However the initial matrix can be very sparse due to small seed dictionary. To overcome that

problem, the authors used a variety of bilingual signals such as Wikipedia interlingual links

to add additional entries in the matrix T. They also used monolingual signals such as word

embeddings as word features. These word embeddings were bi-lingually informed. This was

achieved by training a neural network to map all the word embeddings to a common space.

5.2. Experiment 1

In this experiment, we experimented with using a 3rd language as a pivot in the framework

to translate a word from the source language to the target language. We chose our source

language as Hindi and the target language as English. We chose the intermediary language

as Urdu.
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5.2.1. Hindi-Urdu Transliteration or Translation

The hypothesis here is that the Hindi and Urdu words are pronounced similarly most of

the time. If this hypothesis is true, then it would mean that words written in Urdu and

Hindi should be transliterated and not translated. So, to test this hypothesis, we extracted

a small dictionary of English - Urdu words 1. The data consists of the English words, their

Urdu translations and the transliterated version of the Urdu words. For example:

1. weather موسم meosem

2. head سر ser

3. colors رنگ renegue

Our final data consisted of approximately 600 words. This data comprised of words from

categories such as numbers, colours, body parts, time, days of the week, food items, animals,

places, objects, clothes, nature, weather, relationships, verbs and some popular urdu phrases

as well among others.

Then, we manually translated the English words to the Hindi and verified the proportion

of Hindi words that approximately or exactly sounds like the Urdu words. The results

showed that approximately 82% of the time, the urdu words were direct transliterations of

the Hindi words.

5.2.2. Methodology

The methodology can be explained through the diagram in figure 5.2.2. The diagnol regions

1, 5 and 9 are simply the identity sub-matrices. The entries in regions 3 and 9 are filled using

an existing seed Urdu-English dictionary. The entries in regions 6 and 8 are filled using a

transliteration model trained to transliterate words from Hindi to Urdu. The regions 2 and

4 are filled using the Hindi-English training data and it also consists of the testing data.
1http://mylanguages.org/learn_urdu.php
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The testing data are empty rows / columns in the sub-matrix.

Figure 4: Hindi-Urdu Bi-Lingual Lexicon Induction using Urdu as pivot language

Our hypothesis is that since Hindi and Urdu are mostly transliterated, augmenting the ma-

trix with Urdu transliterations and Urdu-English seed dictionary would provide additional

signals to improve the quality of Hindi-English translations.

5.2.3. Data

Based on the above result, we assume every Hindi-Urdu word pair to be a transliteration

pair. We train a transliteration system with source as Hindi and the target as Urdu lan-

guage. We extracted the data by using Wikipedia API to extract the Hindi and Urdu

Wikipedia articles of the people who were born or died in years from 0 to 2017. This was

done because the data extracted earlier from English wikipedia consists of many pages with

no interlingual links in both: Hindi as well as Urdu. Also, there may exist some pages

in Hindi/Urdu wikipedia with no link to English wikipedia and therefore would have been

missed out during the extraction process. Our final data consisted of approximately 24,000

word pairs. We use this data to learn a transliteration model from Hindi to Urdu language.
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For our experiment, we used 9,000 pairs of English-Hindi words as training data and 1,000

English-Hindi words for testing. For each of the Hindi word, we generated top-100 Urdu

transliterations. We also used a seed dictionary between Urdu and English.

For monolingual auxillary signals, we trained a Word2Vec Embedding model for Urdu

language. The data used to train the Urdu model consisted of 107,000 documents and 50

million words from BBC news data. The data was preprocessed using sentence splitting,

tokenizer and normalizer. We trained a neural network to learn mapping from English-Urdu

embeddings.

5.2.4. Results

We evaluated the results by measuring the top-10 accuracy, i.e. if the correct English

translation was present in the top 10 candidates generated by the system. We achieved a

top-10 accuracy of 67.7%, which is slightly lower than that achieved without using the pivot

language. We think that this is because of the poor quality of seed English-Urdu dictionary.

By inspecting, we found that there were too many cases of polysemy. For example, dirt and

opaque were both translated to غՏՄظت

5.3. Experiment 2

5.3.1. Methodology

For our second experiment, we move away from the idea of using a pivot language. Instead,

we augmented the matrix by adding the English transliterations of the Hindi words to the

vocabulary as well. After doing so, we augment our training data to include the top-3

English transliterations for each Hindi word as well as the English words in the original

vocabulary within an edit distance of 1 from these transliterations.
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Figure 5: Adding transliterations (translit) as signals for completing the translation
matrix.

5.3.2. Data

We train a model to learn transliterations from Hindi to English language as described in

Chapter 4. We extracted the data using Wikipedia interlingual links to get the English

Wikipedia pages for all the people who were born or died in years from 0 to 2017. We

used the titles of these pages and the interlingual links (to access the Hindi Wikipedia) to

generate the transliteration training data.

5.3.3. Results

We used the modified matrix in Wijaya et al. (2017)’s matrix completion framework. We

evaluated the results using top-10 accuracy as before. We achieved a top-10 translation

accuracy of 49.4 % which is considerably worse than what was achieved before.

5.4. Experiment 3

5.4.1. Methodology

For our third experiment, we try to re-rank the list of translation candidates output by

the system using the transliteration data, heuristically. To generate candidate translations

for a source word, we first produce the top-32 transliterations of the source word in the

target language using our transliteration system. We then collect all words in the target
2We choose to use only the top-3 transliterations for each source word for efficiency reason, as we need to

compute their edit distances to all the words in the target language vocabulary, which in our experiments
contains the 100K most frequent words in the Wikipedia of the language
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language that are close – defined as having an edit distance of 1 or less – to any of the

transliterations. We select target word(s) with the most number of close transliterations as

candidate translations for the source word.

We use candidate translations that are generated from transliterations as observed transla-

tions in the translation matrix X (translit in Figure 5). Given the observed translations,

we infer the score of how likely a source word f (in the row of the matrix) and a target word

e (in the column of the matrix) to be translation of each other using matrix factorization

(MF) Koren et al. (2009):

x̂mf
f,e = pTf qe

where pf and qe are respectively, the row and the column of two low rank matrices that are

used to approximate X.

Since the observed candidate translations that we obtain from transliterations may be

sparse, similar to bpr, we use auxiliary signals for measuring translation equivalence that

are based on similarities between the words’ embeddings in the joint embedding space of

the source and the target language:

x̂auxf,e = θTf θe + βT θe

where θe represents the target word’s embedding in the joint space and θf is the feature

vector whose dot product with θe models the extent to which the embedding of the source

word f matches the embedding of the target word e.

We combine the MF and auxiliary formulations for defining the transliteration-based trans-

lation score x̂trlitf,e :

x̂trlitf,e = x̂mf
f,e + x̂auxf,e

Although transliteration does not always imply translation e.g., words can be transliterated

to words that sound the same but have different meanings; our intuition is that transliter-
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ations can be useful for translating words such as numbers or named entities. Therefore,

we use our transliteration-based scores to add to bpr translation scores and re-rank its

translation output when the source word is either a number, a single character, or a name.

To infer when transliterations should be used for re-ranking, we use heuristics that look at

the current bpr translation output.

Specifically, if the top-1 translation is a number or a single character, this may signal that

the source word is also a number or a single character. In this case, since numbers are usually

transliterated between languages and retain the same length (i.e., number of characters), we

use transliterations-based translations that have the same length as the top-1 translation

and add them to bpr output.

Secondly, if any of the transliteration-based translations has an edit distance of 1 or less to

any of the bpr output, they may be good additional translations of the source word and

we add them to bpr output. Finally, if more than a quarter of bpr output are names3,

this may signal that the source word is also a name. Since names are often transliterated

between languages, we add all the transliteration-based translations to bpr output. Our

method is summarized in Algorithm 1.

5.4.2. Data

We train a model to learn transliterations from Hindi (hi), Bengali (bn), Telugu (te), Tamil

(ta), Nepali (ne), Ukranian (uk), Bulgarian (bg) and Siberian (sr) to English language as

described in Chapter 4. We extracted the data using Wikipedia interlingual links to get

the English Wikipedia pages for all the people who were born or died in years from 0 to

2017. We used the titles of these pages and the interlingual links (to access the language’s

Wikipedia) to generate the transliteration training data.

To determine if a candidate is a name, we extracted the list of English categories from

DBpedia and Yago and checked if the candidate is a valid category in the list.
3We collect named entities in the target language from Wikipedia names and surnames categories in the

language and YAGO knowledge base of Wikipedia named entities: http://www.yago-knowledge.org/
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5.4.3. Results

We evaluated the system’s performance using top-10 accuracy. The results for all the lan-

guages are presented in figure 5.4.3. As can be seen, the performance increases substantially

for all the languages.

Figure 6: Top-10 accuracy for Hindi (hi), Bengali (bn), Telugu (te), Tamil (ta), Nepali (ne),
Ukranian (uk), Bulgarian (bg) and Siberian (sr) to English Translation
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Algorithm 1 Re-ranking bpr translations
Input: bpr top-10 translations for a source word f i.e., bpr10(f) = e1...e10 with bpr
scores x̂bprf,ei

where i = 1...10, and transliteration-based translations for the word f i.e.,
trlit(f) = g1...gK with scores x̂trlitf,gi

where i = 1...K, K = |trlit(f)|
Output: re-ranked bpr translations bprrr(f) = h1...h10 where hi ∈ bpr10(f) ∪ trlit(f)
with scores x̂rrf,hi

= x̂bprf,hi
+ x̂trlitf,hi

Initialization: bprrr ← bpr10
begin:
reranked ← false
if e1 is a number or a single character do:

for i = 1...K do:
add gi to bprrr if |gi| = |e1|
reranked ← true

end for
else:

for i = 1...K do:
if ∃e ∈ bpr10(f) s.t. editDist(gi, e) ≤ 1
do:

add gi to bprrr
reranked ← true

end if
end for

end if
if ¬ reranked do:

if #names(bpr10)
10 ≥ 0.25 do:

for i = 1...K do:
add gi to bprrr

end for
end if

end if
sort bprrr and retain only the top-10
end
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CHAPTER 6 : When to translate vs transliterate?

In this chapter, we discuss ways to identify when to transliterate a word in a sentence.

Machine Translation techniques do not perform well to identify the correct transliterations

vs translations and depend entirely on the phrase-table built using the training data. For

example, if the English sentence is:

He was the captain of the national championship team in 1982.

He was the chief of the National Basketball Association in 1990.

A machine translation system should translate the word national in the first example, but,

the same word should be transliterated in the second sentence. However, simply relying

on the Named-Entity Recogniser to identify named-entites in a sentence and transliterating

them does not work. This is because not all name-entities should be transliterated. For

example,

He was a resident of Kolkata, a city in West Bengal.

Here, named entities are marked as bold. Although Kolkata and Bengal should be translit-

erated, but West is just a direction and should be transliterated instead. Another problem

is sometimes words which are not part of any named entity become a candidate of translit-

eration. For example,

We ordered dal makhani, paneer tikka, rice and naan bread in the Indian restaurant.

The food items in the above sentence are not named entities but they should be transliter-

ated while translating the sentence to some other language.

Hermjakob et al. (2008) considered this as a sequence tagging problem. They trained a

averaged perceptron tagger using the SEARN algorithm over an annotated corpus. After

that they proposed to add the transliteration to the phrase-translation tables of the SMT

system based on the tagged output (determining whether the word should be transliterated
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or not).

6.1. Methodology

We follow a similar approach to the one used by Hermjakob et al. (2008) to learn whether

a word should be transliterated or not in a sentence. We describe it as follows:

1. We generate alignments for a Hindi-English parallel corpora

2. We created a test set using 120 sentences by manually annotating every word in

the Hindi sentence with the label indicating whether its aligned English word is a

transliteration or not.

3. From the remaining parallel aligned data, we generated the training and validation

data set. We filter out the pairs in which either the Hindi or the English word is a

stopword or a number or a single character. For the remaining pairs, we tag it as a

transliteration pair if the edit distance between the Hindi word and the Hindi translit-

eration of the English word is less than or equal to 1 for top-10 transliterations. The

final training data consists of approximately 340,000 sentences while the validation

data consists of 30,000 sentences.

4. We extracted the features: context words in a window of size 5, their 2,3,4-grams and

their prefixes and suffixes for the training, validation and testing data.

5. We trained a CRF classifier model 1 on the training data.

6.2. Data

We used the Hindi-English parallel training data Kunchukuttan et al. (2017), which consists

of approximately 1.5 million sentences. We used Berekeley aligner 2 to create alignments

between Hindi and English sentences.
1https://taku910.github.io/crfpp/
2https://github.com/mhajiloo/berkeleyaligner
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To train the transliteration model, we used the data extracted using Wikipedia interlingual

links as explained in chapter 4.

6.3. Results

We evaluate the system performance using the metrics: Precision, Recall and F1 score. The

results are presented in the table 12.

Data Type Precision Recall F-Score
Validation 79.5 77.5 78.4

Test 91.2 64.4 75.4

Table 12: Identifying when to transliterate a word in the sentence
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CHAPTER 7 : Conclusion

In this study, we have explored the task of Machine Transliteration. We created a base

transliteration system by treating it as a monotone machine translation task. We then

explored ways to improve the system performance using additional data/techniques which

may be helpful in a low resource setting.

We tried augmenting the training data using backlinks but it didn’t improve the performance

at all. We found that using languages written using same script to increase the training

data improves the performance considerably. We have also shown that although using a

3rd language as intermediary during transliteration, the performance declines but F-score

suggests that the transliterations are still intelligible. Clustering the data according to the

source of origin can also help in improving system performance but the reduced dataset can

affect that in an adversarial manner as well.

We also successfully demonstrated that machine transliteration could be used as signals for

improving bi-lingual lexicon induction. We did this by following a heuristic-based approach

and re-ranking the list of candidates output by the current matrix completion framework.

We also implemented a sequence tagger to identify the words that need to be transliterated

in a sentence. This can be used as another component to improve the machine translation

system’s performance.

7.1. Future Work

Our method of clustering words based on the source of origin resulted in good performance

boost. However, our data was collected from Wikipedia itself. In a real-world scenario or

in a low-resource setting, such data may not be accessible. To deal with such situations, we

can experiment with using other clustering techniques such as K-means.

Another useful study would be to explore into how to use machine transliteration in a

machine translation system and study the impact on the performance. Another possible
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area of application is Cross-Lingual Entity Linking, where the objective is to link the entities

present in a document written in non-English to English knowledge base.
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